ANALYSIS AND NUMERICAL SIMULATION OF STRAIN

LOCALIZATION IN INELASTIC SOLIDS UNDER FULLY

| COUPLED THERMOMECHANICAL AND
POROPLASTIC CONDITIONS

by

F. ARMERO
University of California at Berkeley
Structural Engineering, Mechanics, and Materials
Department of Civil and Environmental Engineering
713 Davis Hall, Berkeley, CA 94720
Phone: (510)-643 0813  FAX: (510)-643 8928
e-mail: armero@ce.berkeley.edu

Final Report
- August 2000

Research supported by the ONR under grant
no. N00014-96-1-0818 with UC Berkeley

The Office of Naval Research
Ship Structures & Systems Division
Computational Mechanics Program
Dr. Luise Couchman, Program Director
ONR 334
Ballston Center Tower One
800 North Quincy Street

... Arlington VA 22217-5660

DISTRIBUTION STATEMENT A - DTIC QUALITY INSPEOFED ¢

A ion ™ 20000821 045

;&\j




Table of Contents

Abstract

...............................

Key words

..............................

1. Motivation and Goals

.......................

Research Accomplishments

2

3 Impact of the Research. Relevance to the Navy
4.  Future Work and Extensions . . . . .
5

...............

© 00 N A N =

Outline of the Rest the Report
5.1. Appendlx I: Large scale modeling of localized dissipative mechanisms in
a local continuum . . . . .. . .00 L0 9

5.2.  Appendix II: Analysis of strong discontinuities under fully coupled ther-
momechanical conditions . . . . . . . . . .. .. ... .. 10

5.3.  Appendix III: Analysis of strong discontinuities in poroplasticity .11
5.4.  Appendix IV: An ALE finite element method for finite strain plasticity 11

...................

Publications under ONR support . . . . . . . . . . . . . . . . . .. 12
Invited Lectures, Conference Contributions, Organized Symposia
and Edited Special Issues . . . . . . . . . .. . ... ... ... .. 16
APPENDIX I. Large-Scale Modelmg of Localized D1s51pat1ve
Mechanisms in a Local Continuum .. 20
L1. Introduction . . . . . . . . .. .. . ... 21
12. The Large-Scale Problem . . . . . . . . . . . . ... . . . ... . 24
I.3. Characterization of Localized Dissipative Mechanisms in
the Local Continuum . . . . . . . . . . . . ... ... . ... . 26
1.3.1. The kinematics of strong discontinuities . . . . . . . . . . . . 26
1.3.2. The localized dissipation . . . . . . . .. .. ... ... . 29
1.3.3. The localized constitutive relations . . . . . . . . . . . . . 30
1.3.3.1. Model example: a rigid (visco)plastic slip model . . . . . 33
L4. The Construction of the Local Continuum Formulation . . . . . . . . . 34

I.4.1. The final governing equations . . . . . . . . . . . . . . . .. 34



[.4.3. The finite element implementation . . . . . . . . . . . . . . .

L5. The Extension to the Finite Deformation Range . . . . . . . . . . . .
L.5.1. The finite kinematics of strong discontinuities . . . . . . . . . .
1.5.2. Localized dissipative mechanisms in the finite deformation range
1.5.3. The governing equations and their finite element implementation

L6. Representative Numerical Simulations . . . . . . . . . . . . . . ..
1.6.1. 1D wave propagation problem in a softening viscoplastic shear layer
1.6.2. The plane strain tension test . . . . . . . . . . . . . . . .|

L7. Conclusions . . . . . . . ... ...

APPENDIX II. Analysis of Strong Discontinuities under Fully

Coupled Thermomechanical Conditions
II.1. Introduction C e e e e e e e e e e,

IL.2. A Spectral Analysis of the Linearized Problem . . . . . . . . . . . . .
I1.2.1. Problem definition . . . . e e e e e e
I1.2.2. Linearized stability analysis . . . . . . . . . . . . . . . ..
I1.2.3. Investigation of the ill-posedness e e e e e
I1.2.4. Evaluation of the mesh-size dependence of the finite element solutions

I1.3. An Analysis of Wave Propagation in A Localized Thermo-
ElastoPlastic Shear Layer . . . . . . . . . . . . . . .. . . . ...

IL.3.1. Problem description . . . . . . . . . . . . . . . . .. . ..
I1.3.2. Exact solution for a localized softening model . . . . . . . . . .

I1.3.3. Parametricstudy . . . . . . . . . . . . ... .. ... .
I1.3.3.1. Nondimensional parameters . . . . . . . . . . . . . .
I1.3.3.2. Properties of the solution . . . . . . . . . . . . . ..

I1.4. An Analysis of the Approximation of Strong Discontinuities . . . . . . .
11.4.1. An approximate solution for A > 0: analytic results . . . . . . .
I1.4.2. Properties of the solution . . . . . . . . . . ... .. . .

IL5. Extensions to General Multi Dimensional Problems . . . . . . . . . .
IL5.1. The continuum model . . . . . . . . . . ... .. ... .
I1.5.2. Strong discontinuities in thermoplastic media . . . . . . . . . .
I1.5.3. The finite element implementation . . . . . . . . . . . . . . .

I1.5.4. Representative numerical simulations . . . . . . . . . . . . |
IL5.4.1. Plane strain tension test . . . . . . . . . . . . . ..

i

59

69




I1.5.4.2. Rigid block pushed against a thermoplastic foundation . . 104
IL6. Concluding Remarks . . . . . . . . . . . . ... ... 109

APPENDIX III. Analysis of Strong Dlscontlnultles in Coupled

Poroplasticity ce e coe . 112
HOLY. Introduction . . . . . . . . . . . . ... . . . ..... 113
III.2. A Characterization of Discontinuous Solutions in Porous
Media . . . . . . .. 115
II1.2.1.The large-scale mechanical problem . . . . . . . . . . . . .. 115
I11.2.2.The kinematics of strong discontinuities . . . . . . . . . . . . 116
II1.2.3.The characterization of the fluid flow . . . . . . . . . . . . . 118
II1.3. Localized Dissipative Mechanisms in Coupled Poro-Elastoplastic
Solids . . . . .o 121
I11.3.1. The continuum poro-elastoplastic model . . . . . . . . . . . 121
1I1.3.2. The localized dissipative mechanism . . . . . . . . . . . . . . 124
II1.4. Model Problem: a Dilatant Shear Layer . . . . . . . . .. ... .. 126
II1.4.1.The poro-elastoplastic model . . . . . . . . . . . . . . 127
II1.4.2.An enhanced finite element formulation . . . . . . . . . . . . 129
IIL.5. Representative Numerical Simulations . . . . . . . . . . . . . 134
IIL.5.1.The undrained shear test . . . . . . . . . . . . . . . . 135
IL5.2.The drained shear test . . . . . . . . . . . . . . . . 138

IL6. Concluding Remarks . . . . . . . . . . .. . . . . ... . 141

APPENDIX IV. An ALE Finite Element Method for Finite

Strain Plasticity . . . . .. .. 14

IV.1.Introduction . . . . . . . . .. .. ... 145
IV.2. Continuum Equations of the ALE Formulation . . . . . ... . ... 146
IV.2.1.ALE kinematics . . . . . . . . . . . ... .. ... . 147
IV.2.2. Material derivative . . . . . . . .. . ... ... .. . 148
IV.2.3.The balance laws . . . . . . . . . . .. .. . . ... . . 150
IV.2.4.Boundary conditions . . . . . . . . . . . . ... .. . | 151
IV.2.5.Weak formulation . . . . . . . . . ... . ... ... 152



IV.3. A Staggered Approach to the ALE Problem
IV.3.1.The discrete equations
IV.3.2.The global approach . . . . . . . . ... . .. . .. .
IV.3.3.Mesh distortion measures

..............

....................

..................

IV.3.4.Mesh smoothing (determination of X)

.............

IV.4. An Advection Method Based on Particle Tracking
IV.4.1.Plastic variable advection
IV.4.2.The pure advection equation

...........
..................
.................

IV.4.3.Numerical particle tracking

..................

IV.4.4. Additional practical considerations

..............

IV.5. Representative Numerical Simulations
IV5.1.Patchtest . . . . . . . . . . ... .. ... ... ..

IV.5.2.Indentation of an elastic block
IV.5.3.Necking of a circular bar

................

................

IV.5.4.Plane strain tension test . . . . . . . . . . . . . . . . . .
IV.5.5.Indentation of an elastoplastic block
IV.5.6.Impact of a circular bar

...................
........................

App. IV.2. Numerical Implementation of Three Dimensional
Elasticity

..........................

IV.2.1.Preliminaries . . . . . . . . . . .. .. ... ... . .

IV.2.2. Linearizations . . . . . . . . . ... ... ... .. .
IV.2.2.1. Linear Momentum . . . . . . . . . . . . . . . ..
1V.2.2.2. Constitutive Equation for Pressure
1V.2.2.3. Compatibility Equation for Theta

IV.2.3. Augmented Lagrangian modifications

..........

...........

.............

iv



ANALYSIS AND NUMERICAL SIMULATION OF STRAIN
LOCALIZATION IN INELASTIC SOLIDS UNDER FULLY
COUPLED THERMOMECHANICAL AND
POROPLASTIC CONDITIONS

1

by

F. ARMERO
Structural Engineering, Mechanics, and Materials
Department of Civil and Environmental Engineering
University of California, Berkeley CA 94720

Final Report
August 2000

Research supported by the ONR under grant
no. N00014-96-1-0818 with UC Berkeley

Abstract

We present in this report a summary of the research supported by the ONR during the period June
11996 to May 31 2000 on the analysis and numerical simulation of strain localization in inelastic
solids. Special attention is given to the analysis of failure under coupled thermo- and poro- plastic
conditions, as well as the consideration of coupled plastic damage in solids. The highly non-smooth
solutions of interest involve discontinuous displacement fields, the so-called strong discontinuities,
requiring the formulation of a new framework for their inclusion in the local continuum and the
development of enhanced finite element techniques that incorporate the associated singular strain
fields to capture the localized dissipative mechanisms characteristic of the failure of solids in a
physically correct and efficient manner. Both Lagrangian and arbitrary Lagrangian-Eulerian finite
element techniques have been developed. The resulting models and numerical methods have been
studied and evaluated in detail through rigorous mathematical analyses and a number of numerical
simulations. Additional tools, like the formulation of new enhanced strain finite elements for
finite deformation problems and new globally convergent closest-point projection integrators for
elastoplasticity, have been developed as needed in the solution of the highly nonlinear problems
of interest in this work.

KEY WORDS: strong discontinuities, strain localization, failure, elastoplas-
ticity and damage, coupled thermoplasticity and poroplastic-
ity, enhanced strain finite elements, ALE methods, closest-
point projection schemes.
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1. Motivation and Goals

The complete characterization of the damage and failure in solids is not only of the
main theoretical importance, but also of the major interest for its numerous practical
applications. Typical examples are the analysis of industrial processes in metal forming,
crash worthiness studies, and the simulation of the failure of large structural systems.
The failure of most materials is often characterized by a concentration of strains along
narrow bands. Characteristic examples are shear bands in metals, geological materials,
and localization bands of cracking in brittle materials like concrete, among others. The
small scale associated to these bands, compared to the overall response of the solid or
structure, is to be noted.

Previous theoretical analyses of local rate-independent plasticity models in the local
continuum have shown the existence of discontinuous solutions, thus replicating the above
observed phenomena in a large scale. These solutions involve a discontinuous displacement
field with the associated strains being bounded measures (e.g. a Dirac delta function).
They are referred to as strong discontinuities. In general, the multi-scale nature of the
problem is reflected by these complex non-smooth solutions, with small regions (regions
of zero measure in the limit case of discontinuous solutions) where the dissipative effects
are concentrated. The correct numerical resolution of such discontinuities proves then to
be a crucial requirement for large-scale simulations of the failure of solids and becomes
the key characteristic of the approach considered in this project. More specifically, the
research developed in this project addresses the theoretical and numerical aspects of strain
localization in inelastic solids under fully coupled conditions, under both coupled thermo-
mechanical conditions (typical of the deformation of metals) and of coupled poroplastic
conditions (typical of the deformation of soils and saturated porous media, in general).

The first goal of this project is the derivation of the precise mathematical conditions
controlling the formation and propagation of strong discontinuities in solids. This dis-
continuities are characterized by a discontinuous displacement field, in contrast with the
classical approach based on (wezk) discontinuities of the strains. To that purpose, a com-
plete thermodynamically consistent, multi-scale framework of this phenomenon has been
developed to incorporate the effects of the localized dissipative mechanism causing the
failure of the material in the local continuum modeling the large-scale response of the solid
or structure. As indicated above, the cases of coupled thermo- and poro- plasticity as well
as the consideration of damage are of the main interest in this project. The characteriza-
tion of the strong discontinuities in these conditions is to be accompanied by a complete
analysis of the resulting boundary-value problems identifying their well-posedness (in the
sense of Hadamard, with a continuous dependence of the data in particular), in contrast
with the pathologies observed in models of the local continuum incorporating (continuum)
strain softening.

The second goal of this project is the development of new finite element methods
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for the fully nonlinear regime that incorporate enhanced discontinuity-capturing interpo-
lations. The new methods must avoid the aforementioned pathologies of the numerical
solutions based on a local continuum with strain softening, namely, the non-physical de-
pendence of the computed solutions on the mesh size. Furthermore, the new methods
must be able to resolve these highly oriented solutions, characterized by surfaces of dis-
continuity, independently of the mesh alignment. These properties are to be obtained in
unstructured spatial discretizations of the domains under consideration. In addition, the
new methods must be computationally efficient showing a local structure, in the sense that
the final solution of the large-scale problem involves the nodal unknowns in a typical finite
element solution only (e.g., nodal displacements and nodal temperatures in the context
of thermoplasticity). In other words, computational efficiency requires that the unknowns
introduced to model the localized dissipative mechanisms of interest are eliminated locally
at the element level.

All these research objectives identified in the original proposal have been fulfilled in
this project. Furthermore, the difficulties associated with the modeling and numerical
solution of this highly nonlinear, non-smooth problems required the development of addi-
tional tools of analysis. In particular, and at the numerical level, we can quote the need of
improved finite elements for finite deformation problems and of improved integration algo-
rithms of the nonlinear equations of inelasticity (plasticity and damage, in general). In the
first case, the need of finite element formulations that avoid volumetric and shear locking
while being stable (in the sense that they avoid hourglassing) in the fully nonlinear finite
deformation range has motivated the developments of new mixed/enhanced finite element
formulations, including complete mathematical analyses of the new and existing methods
in the general context of finite strain elastoplasticity. Concerning the need of improved
local integrators in elastoplasticity, the limited global convergence properties of existing
return mapping algorithms (the so-called closest-point projection method) has motivated
us to develop a full analysis of the mathematical structure of the resulting discrete equa-
tions, again in the general context of finite strain elastoplasticity. This analysis identified
new and improved, globally convergent schemes for the local integration of the plastic and
damage models employed in this project.

The large strains associated to the localized solutions of interest in this work lead
to highly distorted finite elements, preventing the successful numerical solution of the
problem. As identified in the original proposal, it is of the main interest to develop then
non-Lagrangian techniques that accommodate these distortions. In this way, we have de-
veloped a new arbitrary Lagrangian Eulerian (ALE) finite element formulation for finite
deformation elastoplasticity that accomplishes effectively these objectives. The consid-
eration of multiplicative finite strain plasticity in a fully implicit context has been our
main interest in our developments. In this context, the proposed method involves an ef-
ficient advection of the internal plastic variables thanks to the direct consideration of the
material remap in contrast with existing formulations based usually on rate forms of the
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governing equations. The use of this newly developed method in problems involving strain
localization and failure has shown to lead to an improvement over existing Lagrangian
methods.

The need for additional tools does not reduce to computational considerations, but
also to developments more theoretical in nature. In this way, the analysis of the failure
in saturated porous media required the development of the proper framework to account
for the different effects of the plasticity and fluid flow. Similarly, the analysis of the cou-
pling between damage and plasticity in materials required the development of the proper
framework for its study. To these purposes, we have also considered in this project: 1) the
development of a new framework of poroplasticity at finite strains based on a multiplica-
tive decomposition of the deformation gradient and an additive decomposition of the fluid
content in elastic and plastic parts, and 2) the formulation of a new framework for coupled
damage plastic models based on a kinematic decomposition of the strains in elastic, plastic
and damage strains, in contrast with existing models based only on elastic and plastic
strains with the damage effects introduced elsewhere. In the case of the developments in
poroplasticity, the right consideration of the inelastic effects associated to the fluid flow
in the saturated porous media has led to the correct identification of the singular fields
at failure in these models. Finally, the newly developed coupled damage plastic frame-
work has allowed the physically motivated modeling of these effects in a modular structure
very convenient for its numerical implementation. Applications considered so far include
the study of coupled plastic damage in porous metals, with additional applications being
currently under consideration.

2. Research Accomplishments

We present in this section a summary of the research accomplishments obtained in this
project, addressing the objectives identified in the previous section. Complete references
to the publications where they appeared are included (see list in page 12 of this report).

1. The formulation of a thermodynamically based framework to model localized dissipa-
tive mechanisms in inelastic solids [10, 15, 27, 28, 31, 33

1.1 Identification of the proper localized laws along the limit discontinuous solutions
(the so-called strong discontinuities) in a multiscale framework by which the local-
ized effects at failure of the small scales are introduced in the large-scale problem
of a inelastic local continuum. Applications developed:

1.1.1 Infinitesimal and finite strain elastoplasticity, including localized viscous
models. [10,27]

1.1.2 Infinitesimal and finite deformation anisotropic damage models. [15,28, 31]
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1.1.3 Fully saturated porous media and coupled thermomechanical models (see
Items 3 and 4 below, respectively).

1.2 Finite element implementation through the formulation of local enhancements of
general mixed finite elements with the singular strain fields characteristic of the
discontinuous solutions of interest.

. Complete mathematical analyses of the localized models resulting of the framework
developed in the previous item and the proposed finite element methods [11,25]:

2.1 Exact closed-form solution of the wave propagation in a localized bar exhibiting
a softening relation along a strong discontinuity.

2.2 Full analytic characterization of the properties of the finite element approxima-
tions in this one dimensional dynamic setting. ’

- The characterization of localized dissipative mechanisms under coupled thermome-
chanical conditions [3, 22]:

3.1 Linearized spectral analyses identifying the instabilities and ill-posedness in con-
tinuum models with strain and thermal softening.

3.2 Full analytic characterization of the exact solutions of wave propagation in a
localized softening shear layer, involving strong discontinuities under fully coupled
thermomechanical conditions.

3.3 Full analytic characterization of the approximations properties of enhanced finite
elements in this one dimensional thermomechanical context with strong disconti-
nuities.

3.4 Characterization of strong discontinuities in thermoplasticity and their resolution

through enhanced strain finite element methods in general multi dimensional
problems.

. The analysis of the failure in coupled elastoplastic models of saturated porous media
8,9,14,23,24):

4.1 Formulation of a new finite deformation framework of coupled poroplasticity,
incorporating the inelastic effects of the fluid flow through an additive decompo-
sition of the fluid content and a multiplicative decomposition of the deformation
gradient. [9,24]

4.2 Finite element implementation of this framework, including the formulation and

analysis of staggered time-stepping algorithms for its efficient numerical solution.
[9,24]
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4.3 Characterization of strong discontinuities in this fully coupled context, including
the formulation of enhanced strain finite element methods for their numerical
resolution. [8,14, 23]

4.4 Finite element methods incorporating the limit discontinuous solutions.

. The formulation of ALE finite element techniques to accommodate the large mesh
distortions that appear when resolving localized failures [4,16,17):

5.1 Separate interpolation and resolution of the material and mesh motions.

5.2 Staggered implementation incorporating the finite strain multiplicative models of
interest.

5.3 Advection of internal plastic variables step based on particle tracking through
mesh graphs.

5.4 Mesh motion resolves the high distortion of localization bands.

5.5 The consideration of both quasi-static and dynamic problems.

- The development of new enhanced finite element methods for finite deformation prob-
lems in elastoplasticity [7, 12, 26, 29, 30, 32}:

6.1 Analytic characterization of the locking and stability properties of different finite
element formulations in the finite deformation range.

6.2 Formulation of new enhanced/mixed finite elements, exhibiting a locking-free
response in both incompressibility and bending dominated problems.

6.3 Stabilized enhanced finite elements for finite deformation problems.

. The formulation of new globally convergent closest-point projection algorithms (CPPM)
for the integration of the constitutive equations of elastoplasticity [1,2, 13,18, 19):

7.1 Full characterization of the variational structure behind the closest-point pro-
jection equations in elastoplasticity: primal, dual and augmented Lagrangian
formulations.

7.2 Formulation of improved integration algorithms: globally convergent and locally
(asymptotically) quadratic.

- The formulation of a general framework for the formulation of coupled plastic-damage
models [5, 6, 20, 21]:
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8.1 The framework is based on the kinematic decomposition of the strains in elastic,
damage and plastic strains, with the coupled plastic damage evolution equations
arising in a fully thermodynamically consistent context.

8.2 Two main advantages associated to the use of the damage strains:

8.2.1 Direct physical characterization of the damage mechanism in the material’s
response (e.g., cracks, void nucleation and distortion, etc.).

8.2.2 Modular structure of the resulting model very well-suited for its numerical
integration (separate CPPM schemes for the plastic and damage parts).

8.3 The applications developed include the modeling of coupled plastic damage in
porous metals.

Additional details on some of the results in Items 1, 3, 4 and 5 can be found in Appendices
I to IV of this report. See Section 5 for an outline.

3. Impact of the Research. Relevance to the Navy

We believe that the research developed in this project has led to important advances in
the understanding of non-smooth inelastic processes in solids and their numerical modeling.
This includes a complete rigorous characterization of the strain localization in solids under
coupled thermomechanical and poroplastic conditions. Furthermore, new computational
techniques have been developed for the numerical simulation of discontinuous solutions
in solids. The results obtained in this project improve the modeling and computational
capabilities of existing techniques, especially in the failure analysis of the large-scale struc-
tural systems of interest to the Navy. In this way, we have interacted with both the
Computational Mechanics and the Solid Mechanics Programs of the ONR.

These results have been presented in a number of refereed publications as well as in
many conference contributions and invited lectures. A complete list of the publications
prepared in this project is presented in page 12 of this report, and in page 16 for the
transitions of the research funded by this ONR project.

Recognition to the research developed in this project has come in different forms.
In particular, we can quote the many invitations received by the P.I. to present these
findings in national and international conferences, including keynote lectures and addresses
in major national and international meetings (like in the World Congress on Computational
Mechanics held in Buenos Aires, Argentina, in June 1998, and the European Congress on
Computational Mechanics held in Munich, Germany, in September 1999, among others).
During the period of performance of this project, the P.I., Francisco Armero, was awarded a
NSF CAREER Award in June 1997, and the Juan C. Simo Award and Medal in June 1999
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given by SEMNI (the Spanish Society of Numerical Methods in Engineering) every three
years to “a young investigator in recognition of his/her scientific career”. Furthermore,
he received the Best Paper in Engineering Computations in June 1997 for the paper [12]
co-authored with the postdoctoral fellow Dr. S. Glaser.

We would like to mention also the strong educational component of the research
developed in this project. In this context, two graduate students have been supported
during their doctoral studies: Mr. Edward Love (PhD August 2000) and Mr. Jaegyun
Park (PhD expected May 2001). Their respective PhD dissertations include many of the
major results in this project. Additional collaborators include visiting postdoctoral fellows
and visiting professors.

4. Future Work and Extensions

The models, analyses and numerical methods developed in this project are currently
being extended to additional situations. In particular, we note our current efforts to in-
clude the thermomechanical effects identified along the strong discontinuities in the newly
developed ALE finite element methods, as well as the analysis at failure of the constitu-
tive models developed under the newly proposed framework for coupled plastic damage,
including extensions to the finite deformation range.

Our main plans for future work in this area are to develop new adaptive finite element
methods based on the enhanced finite elements developed in this project that incorporate
within the element interpolations the singular strain fields associated to the discontinu-
ous solutions in the displacement field. The adaptive process will lead gradually to the
resolution of these discontinuities by the mesh itself, allowing their separation to model
the final fracture and fragmentation of the solid. One of the advantages of the proposed
approach, in front of many existing approaches in the literature, is that the propagation of
the discontinuities (cracks or localized patterns, in general) occur at the element interiors,
independent of the alighment of the finite elements. The subsequent adaptive process can
then be based solely on accuracy considerations when resolving these highly non-smooth
deformation fields, without the need to provide a myriad of propagation paths to these
discontinuities through special mesh alignments. This key feature of the proposed meth-
ods motivates a complete theoretical analysis of the a posteriori error estimation in these
conditions. To this purpose, residual type error estimators carrying the information of
the solution to be resolved (namely, its directionality) will be carried out. These analyses
will be developed first in the context of linear elastic problems with embedded cohesive
surfaces, taking full advantage of the enhanced strain structure of the proposed finite ele-
ment methods. In fact, the high-performance observed in the continuum enhanced finite
elements developed in this project motivates a complete a posteriori error analysis of this
general class of finite element methods. More specifically, the good performance of these
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elements in configurations with high aspect ratios, due to the lack of shear-locking that
these elements exhibit, makes them very appropriate for anisotropic remeshing strategies,
like the ones needed to resolve the highly directional solutions of interest in this work
involving cohesive surfaces.

These plans are being supported by a continuing grant from the Computational Me-
chanics Programs of the ONR, with starting date of June 1, 2000. This continued support
is gratefully acknowledged. We believe that the combination of all these results will lead
to powerful novel computational tools, with the sound theoretical basis necessary for the
analysis of the complex practical problems of interest to the Navy.

5. Outline of the Rest the Report

After presenting a complete list of the publications prepared under the support of the
ONR and the invited lectures, conference contributions, organized symposia and edited
special issues by the P.I. on the research concerning this project, we present in different
appendices a summary of the technical results obtained in this grant. More specifically,
we present the following four appendices:

I. Large scale modeling of localized dissipative mechanisms in a local continuum.

II. Analysis of strong discontinuities under fully coupled thermomechanical condi-
tions.

III. Analysis of strong discontinuities in poroplasticity.
IV. An ALE finite element method for finite strain plasticity

As summarized in the following sections, these appendices describe the main results re-
lated to the main objectives of the project as identified in the original proposal. No
discussion is made of a number of additional important results obtained in this project, in-
cluding the formulation of coupled damage plastic models and their numerical integration,
finite strain multiplicative poroplasticity and its numerical integration, enhanced finite
element methods for finite deformation problems, and the development of globally con-
vergent closest-point projection algorithms for elastoplasticity. We refer to the different
publications presenting these results as indicated in previous sections.

5.1. Appendix I: Large scale modeling of localized dissipative mechanisms in
a local continuum

This appendix presents a general framework for the formulation of constitutive models
that incorporate a localized dissipative mechanism. The formalism of strong discontinu-
ities is employed, allowing for the decoupling of the constitutive characterization of the
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continuum and localized responses of the material. A procedure for incorporating the lo-
calized small scale effects of the material response in the large scale problem characterized
by the standard local continuum is described in detail. The resulting large scale model is
able to capture objectively the localized dissipation observed in localized failures of solids
and structures. A localized viscous slip model is presented as a model example. The finite
element implementation of the proposed formulation arises naturally as a local element
enhancement of the finite element interpolations, with no regularization of the discontinu-
ities. The above considerations are formulated first in the infinitesimal range, and then
extended to the finite strain regime. Furthermore, it is shown that the proposed frame-
work allows the development of effective finite element methods capturing in the large
scale the localized dissipation observed in the failure of rate-dependent materials, avoiding
the resolution of small length scales associated to the localization bands in these regular-
ized models. Several representative numerical simulations are presented to illustrate these
ideas.

5.2. Appendix II: Analysis of strong discontinuities under fully coupled ther-
momechanical conditions

This appendix begins with a study of the characteristics of failure of an one-dimensional
shear layer with thermomechanical softening behavior. The linearized spectral analysis of
the problem involving a local continuum with strain softening is presented first. More
specifically, the stability and well-posedness of the resulting boundary value problem is
analyzed, identifying the ill-posedness of the local continuum model under certain condi-
tions, most notably, in the inviscid strain-softening case. The lack of an internal length
scale associated to the strain localization is concluded. The implications of this analysis
for the finite element simulations in the form of pathological mesh-size dependent solutions
are also investigated. Next, it is shown that the incorporation of a localized dissipative
mechanism in the form of a strong discontinuity avoids the ill-posedness of the original
continuum problem. This is done by obtaining the closed-form solutions of the dynamic
problem under investigation, showing the uniqueness and continuous dependence of the
solution on the data. An analysis of the finite element solutions incorporating the effects
of these discontinuous solutions is also included. This analysis reveals, in particular, the ef-
fects of thermal softening and its interaction with spatial discretization of the problem. To
verify the conclusions drawn from these analyses, finite element simulations are presented
and discussed. Finally, extensions to general multi dimensional problems are discussed.
An analysis of strong discontinuities is presented in the context of coupled thermoplastic-
ity, characterizing the singular strain and dissipation fields associated with the localized
plastic flow along the discontinuities. The implementation of these effects in the context of
enhanced finite element methods is discussed. Several representative numerical simulations
are presented to illustrate the performance of the proposed methodology.
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5.3. Appendix III: Analysis of strong discontinuities in poroplasticity

We present in this appendix an analysis of strong discontinuities in fully saturated
porous media in the infinitesimal range. In particular, we describe the incorporation of
the local effects of surfaces of discontinuity in the displacement field, and thus the singular
distributions of the associated strains, from a local constitutive level to the large scale
problem characterizing the quasi-static equilibrium of the solid. The characterization of
the flow of the fluid through the porous space is accomplished in this context by means of a
localized (singular) distribution of the fluid content, that is, involving a regular fluid mass
distribution per unit volume and a fluid mass per unit area of the discontinuity surfaces
in the small scale of the material. This framework is shown to be consistent with a local
continuum model of coupled poroplasticity, with the localized fluid content arising from
the dilatancy associated with the strong discontinuities. More generally, complete stress-
displacement-fluid content relations are obtained along the discontinuities, thus identifying
the localized dissipative mechanisms characteristic of localized failures of porous materials.
The proposed framework also involves the coupled equation of conservation of fluid mass
and seepage through the porous solid via Darcy’s law, and considers a continuous pressure
field with discontinuous gradients, thus leading to discontinuous fluid flow vectors across
the strong discontinuities. All these developments are then examined in detail for the
model problem of a saturated shear layer of a dilatant material. In particular, enhanced
finite element methods are developed for this particular problem. The finite elements ac-
commodate the localized fields described above at the element level. Several representative
numerical simulations are presented to illustrate the performance of the proposed methods.

5.4. Appendix IV: An ALE finite element method for finite strain plasticity

This appendix presents an implicit Arbitrary Lagrangian-Eulerian (ALE) finite ele-
ment formulation for solid mechanics. The interest in this work lies in the consideration
of finite strain elastoplasticity based on a multiplicative decomposition of the deforma-
tion gradient in an elastic and plastic part, and the use of an hyperelastic relation for
the stresses in terms of the elastic part. This situation is to be contrasted with typical
ALE treatments found in the literature based on rate (hypoelastic) forms of the governing
equations. In contrast with more classical approaches, the ALE approach presented herein
considers the direct use and interpolation of the material motion with respect to the ref-
erence mesh. This aspect leads to a considerable simplification of the numerical resolution
of the advection of the plastic internal variables. In fact, this advection is accomplishes
through a simple particle tracking scheme based on the connectivity graph of the reference
mesh, avoiding the use of more complex strategies for the solution of the pure advection
equation. These ideas are implemented in an efficient staggered framework, involving a La-
grangian step, a material remap, and the aforementioned advection of the plastic internal
variables. Representative numerical simulations are presented to assess the performance of
the proposed formulation. Both quasi-static and fully dynamic problems are considered.
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I.1. Introduction

Highly localized patterns of the deformation in the form of bands are often observed
preceding the failure of solids and structures. Characteristic examples are shear bands in
metals (see e.g. NEEDLEMAN & TVERGAARD [1984], and references therein) and soils (see
e.g. VARDOULAKIS [1978]), or the localization bands of cracking in brittle materials like
concrete or rocks (see e.g. READ & HEGEMEIER [1984], and references therein), among
many other representative articles. An overall softening response of the solid leading to its
final failure is often observed accompanying this phenomenon. The small scale associated
to these bands, compared to the large-scale response of the solid or structure, is to be
noted. For example, shear bands of order of microns can be found in metals (BAr &
DobD [1992]) or of order of millimeters (MUHLHAUS & VARDOULAKIS [1987]) in the case
of soils, whereas characteristic lengths of typical applications are of the order of meters, or
even kilometers in geological problems. In this way, the smooth pattern of the deformation
of the solid previous to the appearance of strain localization gives rise to highly non-smooth
solutions with localized dissipative mechanisms in the small scale, especially when observed
from the large structural scale. The practical importance of capturing these localization
modes while solving the large-scale (structural) problem is clear.

Classical (local) rate-independent constitutive models are known to lack an internal
characteristic length, thus leaving undefined the small scales associated to the localized so-
lution. Furthermore, the introduction of strain-softening in the local continuum is known to
lead to inconsistencies in the resulting mechanical models. The classical work of THOMAS
[1961], HiLL [1962] and MANDEL [1966], and the more recent analyses in RICE [1976],
OTTOSEN & RUNESSON [1991] and NEILSEN & SCHREYER [1993], among others, have
identified the ill-posedness of problems involving a continuum with strain-softening. The
leading part of the governing equations (the tangent operator) loses ellipticity, resulting in
a change of type of the boundary value problem. The reader is referred also to the illus-
trative dynamic analysis of a one dimensional rod presented in BAZANT & BELYTSCHKO
[1985]. Briefly, these inconsistencies can be traced back again to the lack of an inter-
nal characteristic length defining a material volume where the energy dissipation per unit
volume imposed by a softening stress/strain relation can take place. As a consequence,
the finite element solutions obtained in this context exhibit the well-known pathological
dependence on the mesh size; see e.g. TVERGAARD et al. [1981], and PIETRSZCZAK &
MROz [1981], among many others.

Mathematical analyses of the perfectly plastic rate-independent problem (see JOHN-
SON [1976], MATTHIES et al [1979], SUQUET [1981], and TEMAM [1984], among others)
have identified the existence of non-smooth solutions involving discontinuous displacement
fields, the so-called strong discontinuities, thus reproducing the highly non-homogeneous
states of strain associated to the localized deformations. The observation that perfect
plasticity defines a hyperbolic boundary value problem goes back to PRANDTL [1920], and
leads to the classical slip line theory of rigid-plasticity. The slip lines define in this context
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possible surfaces of discontinuity of the displacement field, identifying the failure mecha-
nism of the solid; see e.g. the accounts in HILL [1950] or LUBLINER [1990], among others.
The introduction of a localized dissipative mechanism along these discontinuities, through
a stress/displacement relation as in the so-called discrete crack approaches of cracking in
concrete (see HILLERBORG et al [1976]), is required for the proper characterization of the
final localized failure of the material. The formulation of a general framework that incor-
porates these localized effects in the local continuum is the first objective of the present
work.

The identification of these inconsistencies has motivated the formulation of many
regularization techniques to avoid the associated difficulties. The main idea in these regu-
larized formulations is the incorporation of internal length scales in the constitutive model.
We can find along these lines the formulation of non-local models defining the constitu-
tive relations at one point through the state of deformation in a finite neighborhood of it
(see e.g. BAZANT et al [1984]); higher-gradient models incorporating higher order effects
in the local constitutive relation, leading to higher order boundary value problems (see
e.g. COLEMAN & HODGON [1985]); and the consideration of Cosserat continua accom-
modating rotational degrees of freedom and, hence, defining a length scale when related
to the displacement field (see e.g. DEBORST & SLUYS [1991]), to mention just some few
representative references.

Similarly, it is known that rate-dependent models introduce a length scale in the
constitutive relation, even in the local continuum framework; see e.g. NEEDLEMAN [1988].
More precisely, the presence of a material viscosity defines a characteristic material time
that together with the existence of a characteristic velocity in dynamic problems leads to
the appearance of a length scale. The boundary-value problem remains well-posed (i.e.,
no change of type occurs). The onset of strain localization has been related in this case to
the appearance of unstable (growing in time) modes in a spectral analysis of the linearized
equations of motion. See MOLINARI & CLIFTON [1987] and references therein for complete
details of these ideas. The well-posedness of the problem still holds in the quasi-static limit,
but then the presence of imperfections highly influences the final localized solution. See
NEEDLEMAN [1988] and BELYTSCHKO et al [1991], among others.

The common idea behind all these regularized approaches is the introduction of the
small length scales characterizing the localized solutions. Consequently, the regulariza-
tion will be effective if these small length scales are resolved by the tools employed in
the analysis, e.g., the spatial discretization employed in their numerical simulation. The
appropriateness of this approach is clear when the main objective is the understanding the
details of the localized mechanisms that appear in the small scale of the material response.
The multi-scale character of the problem needs to be brought up again. In this context,
it may be difficult to motivate complex detailed analyses when the large-scale response
of the structural system is the main objective. The issue is not only of computational
cost, but also the appropriateness of maintaining standard formulations of the mechanical
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problem in stages previous to the failure of the structure and in the large scale, away from
the localized deformation patterns, where traditional numerical techniques are known to
perform well.

The considerations above identify the need for the formulation of constitutive models
that capture the localized dissipation observed in the failure of solids while maintaining
the local continuum framework of the large scale. In this context, the goals of the work
presented herein are twofold. The first objective is the formulation of a large-scale model
that incorporates localized dissipative mechanisms, but treat the small scales associated
to strain localization as unresolvable otherwise. The second goal is then the formulation
of numerical methods (finite element methods, in particular) that implement these ideas
and are able to capture these highly non-smooth solutions accurately. In particular, it is
our goal to develop numerical techniques that capture effectively the localized dissipation
of regularized rate-dependent models without the need of resolving the associated small
length scales. One can talk in this last case of the “large-scale regularization of regularized
models.”

Early attempts of the formulation of large-scale model capturing the localized dissi-
pative effects can be traced back to smeared crack models of the cracking of concrete. See
e.g. BAZANT & OH [1983] and ROTS et al [1985], among others. In this context, the
formulation of continuum models capturing objectively the localized energy dissipation is
accomplished through the proper definition of the softening law depending on the mesh
size employed in the finite element analysis. In this way, the so-called characteristic length
is introduced in the formulation of the mechanical model; see e.g. PIETRSZCZAK & MROz
[1981] and OLIVER [1989]. Related approaches can be found in the formulation of finite
elements involving a-priori defined internal length scales as in BELYTSCHKO et al [1988].

The analysis of strong discontinuities in inelastic contintum models has been pre-
sented in SIMO et al [1993], ARMERO & GARIKIPATI [1995,96], and OLIVER [1996]. The
extension of these analyses to the finite strain range has been presented in ARMERO &
GARIKIPATI [1996]. See also LARSSON & RUNESSON [1996] for a related approach involv-
ing a regularized discontinuity. The formulation of locally enhanced finite elements with
regularized discontinuities can be found in SIMO et al [1993], and OLIVER [1996], with
the limit case involving no regularization presented in ARMERO & GARIKIPATI [1995,96]
for elastoplastic models, and ARMERO [1997b] for damage models of cracking. Finite ele-
ments incorporating embedded localization lines have been also presented in DVORKIN et
al. [1990]. The related approach presented in ORTIZ et al [1987] and NACAR et al [1989],
involving also a local enhancement of the finite element interpolation with discontinuous
displacements but with no added dissipative mechanism, can also be mentioned.

We present in this paper a general framework for the characterization of the dissipative
mechanisms that appear in the failure of solids. The singular fields associated with strong
discontinuities are introduced locally in a neighborhood of a continuum solid. This formal-
ism allows a full decoupling of the characterization of the bulk and localized response of
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the material. Both responses are then modeled independently, with the localized contribu-
tions involving a stress/displacement relation that dissipates energy objectively. No length
scales are required at this stage. It is the incorporation of these local effects in the large-
scale problem, involving smooth fields, that identifies the length scale characteristic of the
problem. The limit of vanishing small scales (the large-scale limit) is then taken, leading
to a large-scale model involving a local continuum that captures correctly the localized
dissipation in the solid. Furthermore, this constructive incorporation of the small-scale
effects in the large-scale problem allows not only for the simple numerical implementation
of these ideas through a local enhancement of the finite element interpolations, but also
for the formulation of the large-scale regularization of rate-dependent models. The numer-
ical implementation of the latter involves the correct scaling of the localized dissipative
mechanism along the strong discontinuity, thus capturing the proper dissipation depend-
ing on the degree of resolution of the small scales by the assumed spatial discretization.
The developments considered herein focus on elastoplastic models characteristic of duc-
tile materials, in both the infinitesimal and finite deformation ranges. The formulation of
large-scale models incorporating the localized damage mechanism characteristic of brittle
materials can be found in ARMERO [1997b].

An outline of the rest of the paper is as follows. Section 1.2 describes the large-scale
problem of interest in this work, consisting of the principle of virtual work with the stan-
dard regularity assumptions. The infinitesimal case is considered. Section 1.3 develops the
constitutive modeling of localized dissipative mechanism in the small scale of the material
characterized by a local neighborhood of a given material point. These mechanisms are
characterized by the singular fields of strong discontinuities, with their constitutive model-
ing fully characterized in a thermodynamical framework based on the principle of maximum
plastic dissipation. Section 1.4 effectively bridges the two problems, the small and large
scale problems, leading in the large scale limit to a consistent formulation of the local
continuum that captures the dissipative effects identified previously in the small scales.
The proposed approach is then used for the formulation of the large-scale regularization
of rate-dependent models in Section 1.4.2, and the formulation of finite element methods
incorporating these ideas in Section 1.4.3. The extension of all these considerations to the
finite strain range in Section I.5. Representative numerical simulations are presented in
Section 1.6 to assess the performance of the proposed finite element formulations. Finally,
Section 1.7 concludes with some final remarks.

I.2. The Large-Scale Problem

This section summarizes the equations governing the large-scale mechanical problem,
in the weak form of interest for the development of finite element methods as presented
in Section 1.6. Regardless of the details particular to the constitutive model defined in
Section 3, the equations for the large-scale problem as assumed in this section retain the
usual smoothness properties.
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Let a domain 2 C R™™ (ng, = 1,2 or 3) define the reference placement of a solid
body, identified with its current placement under the assumption of infinitesimal strains
assumed in this section. Extensions to the finite deformation case are considered in Section
L5. We denote by u : 2 x [0,T] — R™™ the displacement field u(z,t) in a certain time
interval T. This displacement field is imposed to satisfy the essential boundary conditions

u=g ond,N, (I.2.1)

for some specified function § in part of the boundary 0,2 C 82. We define the space of
admissible displacement variations

V= {n Q2 -RMm =0 on 8,0, (1.2.2)

that is, satisfying homogeneous boundary conditions on 8,2 where the displacement field
is imposed. Standard regularity conditions are assumed for the displacement fields € V,
the motivation being the tools of analysis available. In particular, the assumed large-scale
fields can be easily resolved by standard techniques of finite element analysis, as illustrated
in Section 1.4.3. Additional contributions due to the specific response of the material (e.g.,
discontinuities) are introduced in Section 1.3.

The infinitesimal large-scale strains are obtained as
e(u) == Vu = j [Vu+ (Vu)T] , (1.2.3)

with (-)7 denoting the matrix transpose. Let o = o(z) € R™mX"dim (symmetric) be
the stress field in the solid. We denote the applied body force by b : £2 — R"™im (per
unit mass) and the imposed boundary tractions by t : 0r2 — RMdim acting on the part
Or§2 C 012 of the boundary of the solid. The usual assumptions

8.02N0rR=0 and FRUSN =00, (1.2.4)

in each of the ngim components of the displacement /traction are assumed for a well-posed
problem. See Figure 1.3.1 for an illustration. Finally, we denote by @ := d?u/dt? and by
Po the acceleration and the reference density of the solid, respectively.

The large-scale problem of the mechanical initial boundary value problem can then
be written as

The Infinitesimal Large Scale Problem. Find u € V + g satisfying

/poil-nd.(2+/a:V%dQ:/pob‘ndQ-}—/ t-ndr VpeVv,
o’ o) 2 8

2
(1.2.5)
where the stress field o is given by the constitutive model developed in the
following section, and for given initial conditions u(z, 0) = uo(x) and 7u(x,0) =
¥o(x) in the displacements and velocities, respectively. O
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A standard argument based on the weak form (1.2.5) of the equilibrium equations
shows the continuity of tractions for a given orientation defined by a unit vector n. Indeed,
let I" be a generic smooth material surface passing through a point z € {2 with unit normal
n. Assume that the stress field o is smooth in each of the components that I" defines in
{2. Integration by parts of (I.2.5) under this assumption, and accounting for the internal
surface I with unit normal n at & € £2 leads to the strong form of the balance of linear
momentum equation and natural boundary conditions

divo+p,b=0 in 2\I", (1.2.6)
on=1 on 8rf2, (1.2.7)

together with the local form of the equilibrium across I" given by
[eln=0. (1.2.8)

where [o] denotes the jump in the stress Therefore, we have the well-defined vector
Tr:=on iy (I.2.9)

the traction vector on I' for all directions m, where the restriction at £ € I' ¢ 2 is
understood in this last formula.

I.3. Characterization of Localized Dissipative Mechanisms in
the Local Continuum

The previous section introduced the large-scale problem leaving undefined the con-
stitutive relation between the stress and the strain fields. The assumed regularity of the
large-scale displacements and corresponding strains may not incorporate all the effects ob-
served in the response of the material. In this context, the main goal of this section is the
characterization of a localized dissipative mechanism characterized by a discontinuity in
the displacement field, a strong discontinuity. As discussed in the introduction, the con-
sideration of non-smooth solutions describing the localized response of the material may
be of practical use, even if the solutions are smooth but close to the limit situation of a
singular strain field. These ideas are developed further in Section 1.4 and illustrated in the
numerical examples of Section 1.6.

1.3.1. The kinematics of strong discontinuities

Let £2; C {2 be a local neighborhood of a material point & € §2, whose dimensions and
full characterization will be considered in Section 1.4. Our goal is to model the response
of the material when it exhibits a localized dissipative mechanism at . As noted in
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Local neighborhood

Large scale problem

FIGURE 1.3.1 Large scale problem with standard boundary condi-
tions. Definition of the local neighborhood 2, C 2 at a material point
&, with the smooth surface I'; and the corresponding orthogonal ref-
erence system {1m; = n,... s Mngin } (Ndim = 2 in the figure).

the introduction, we consider the large-scale limit characterized by the case of a strong
discontinuity.

Assume the existence of a discontinuity in the displacement field across a surface
I'; C §2, passing through = € §2, with unit normal n. The discontinuous displacement
field across the surface I'; can be written locally in 2, using the decomposition

uu(y) =u(y) +&(y) Mr,(y) yeN2,, (1.3.1)

where the function Mr_ : 2, - R is smooth in £2,\I; and is normalized to have a unit
jump across the discontinuity I, that is,

[Mr.]=1 onr;. (1.3.2)
Let Hr, denote the Heaviside function across I';, defined by
1 yen,,
Hr (y) = 13.3
r.(y) {0 yen | (1.3.3)

where {2, and £2,_ denote each of the two connected components of the neighborhood
{2, defined by I';; see Figure 1.3.1. Given the definition (1.3.3) of the Heaviside function,
the function M, can be written

Mr, =Hr, + N, , (1.3.4)
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for some smooth function N, in £2,. We note that no compatibility requirements between
the displacement fields u and u,, are imposed a-priori on the local decomposition (I.3.1).
The decomposition (I.3.1) is characteristic of the approach presented in SIMO et al [1993].

With these considerations the jump across I, is given by

[u =¢. (1.3.5)

For later use, we introduce the space of displacement jumps
J={§: 02, - RMm} (I.3.6)

a smooth extension in §2; of the displacement jump & at = (ie, & = €(z)). The
displacement field u, : 2, — R™™ defines the displacements observed locally in the
small scale around the material point x, incorporating the localized effects of the assumed
discontinuous solution.

The infinitesimal strains corresponding to the displacement (I.3.1) are given by

eu=Vou, =¢e(u) +E® VN, + V¢ Hr, + (E®n)° 6r, in £, (1.3.7)

7 - s
~ Vv

regular singular
distribution distribution

where the superscript s denotes the symmetric part. The singular part is expressed in
terms of the singular distribution &1, the Dirac delta across I;, after using the classical
result

Ver =N (sz y (138)

see STAKGOLD [1979] (page 100) for the mathematical details involved in the derivation of
(1.3.8). We define

€y :=¢€(u)+(§® VN ) + V¢ Hr, in £2,, (1.3.9)
for the regular part of €, and the singular strains
€5 :=(E®n)’ on Ij. (1.3.10)
With this notation, the strains (1.3.7) in £2, are given by
eE=E&,+E50r, . (1.3.11)
Alternatively, the total strains €, in §2; can be decomposed as

E# - E(‘u) +\€—unres + é.(s 6[’__5 . (1.3.12)

~

1= Eunres
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where
Eunres = G(€) := €, —€e(u)=(E®VNL) + V€ Hr, in 2. (1.3.13)

Physically, the strain field £,y,res is the part of the strains in £2, which is unresolved by the
strains €(u) of the large-scale problem. The decomposition (1.3.12) identifies the regular
and singular part of these unresolved strains. Therefore, the unresolved strains (I.3.13)
are given by

Eunres = G(E) + (& ® n)s 51":, ; - (1314)

being a linear function of the displacement jumps &.

1.3.2. The localized dissipation

Given the kinematics of the strong discontinuities described in the previous section,
we consider the following dissipation functional

D, = / [o: 60— W] ., (13.15)
2
in the local neighborhood 2,, for a stored energy function
W=W(,1I), (1.3.16)

in terms of the small-scale strains €, and a set of internal variables Z to be specified.
Uncoupled thermal conditions are assumed for simplicity (e.g. isothermal conditions with
W corresponding to the free energy of the material). Our goal is the complete charac-
terization of a localized dissipative mechanism along I';. To this purpose, we assume the
following constitutive decomposition of the stored energy in §2,

W =W(E,I)+W(E,I) o, , (1.3.17)

that is, we assume that the stored energy function of the material can be decomposed
in a regular part W in £2,\I; and a singular part W on I, depending respectively on
the regular and singular parts of the small-scale strains as defined by (I1.3.11) and internal
variables. In this way, the generic internal variables T characterize a bulk inelastic response
in £2,, whereas its singular counterparts 7 do so along the discontinuity I,. We observe
that the main consequence of assumption (I1.3.17) is the decoupling of the response of the
continuum and the localized dissipative mechanism. This decoupling allows a separate
characterization of both deformation responses as described next.

The introduction of the decomposition (I1.3.17) in (1.3.15) together with the decom-
position (I.3.7) of the strains leads to the final expression of the dissipation functional

D,,:/Q: [a;éﬂ*v‘v] d.(21+/rz [T-g'-ﬁ/] dr; , (1.3.18)

=B, = D,
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after using the relation

/ o:(y®n)°ér, d%; = | T-vdl, VveJ, (1.3.19)
= Iz

defining the vector field T on I'; in the small scale 2,. Clearly, a completely decoupled
expression of the dissipation is obtained, accounting for the contributions of the continuum
and localized dissipative mechanisms, respectively. As expected, the latter is given by the
difference between the power done by the tractions T on the jump displacement rates E

and the change in the stored energy of the localized dissipative mechanism W.

The characterization of the constitutive equations in the bulk of the material follows
standard arguments based on the dissipation functional 1_)”, after the decoupling of the
localized dissipative mechanism. For example, (visco) elastoplastic models can be found
developed to all the extent in SIMO & HUGHES [1997]. We proceed in the next section
with a similar characterization of the localized dissipative mechanism.

1.3.3. The localized constitutive relations

We develop in this section an elastoplastic model of the localized dissipative mech-
anism identified in the previous section. As shown in Section 1.3.3.1, this framework is
appropriate for the modeling of strain localization in ductile materials. The reader is re-
ferred to ARMERO [1997b] for the case of a localized anisotropic damage mechanism in the
study of cracking of brittle materials.

A general elastoplastic model of the localized dissipative mechanism on I, can be
characterized by the additive decomposition of the displacement jumps

E=¢6+¢&7, (1.3.20)

in elastic and plastic parts, respectively. Furthermore, we assume that the localized strain
energy W is a function of the elastic (or reversible) part of the displacement jump

W =W, a), (13.21)

where we have introduced a single scalar variable & to model the evolution of the irre-
versible processes along I, for simplicity in the exposition that follows, and without loss
of generality. The general case involving a different set of internal variables, 7 as in (1.3.17),
follows easily. Note that 7 = {£?,&} in (1.3.21). The introduction of the stored energy
(I.3.21) in the localized dissipation (1.3.18), leads to the expression

- ow\ . oW .
= —_ . £€ . &P _ A
D, (T afe) E+T-¢& = a. (I.3.22)
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Following standard arguments known as Coleman’s method (see e.g. TRUESDELL & NOLL
(1965]), that is, imposing the physically motivated constraint

D, >0, (1.3.23)

for all processes and, in particular, for arbitrary changes of the reversible part £° of the
displacement jumps, we arrive at the localized constitutive relation for the traction vector

oW
- 3.24
T T (1.3.24)

and the final expression of the localized dissipation

D,=T- £ +qa. (1.3.25)
The notation _
ow
= 1.3.2
q 55 (1.3.26)

has been introduced in (1.3.25) for the stress-like internal variable g.

The localized elastoplastic response can be characterized then by a yield surface

¢=4(T,q), (1.3.27)

depending on the thermodynamical forces T and q conjugate to the rate of internal vari-
ables, as identified by the expression of the localized dissipation (I.3.25). The stationarity
of the dissipation functional (I.3.25) constrained by the yield condition ¢ < 0 leads to the
plastic evolution equations for the rate-independent case. Following e.g. SIMO & HUGHES
[1997] we construct the unconstrained function

L,u(T,q) == —~Du(T,q) +7 6(T,q), (1.3.28)

for a (localized) consistency parameter ¥ satisfying the Kuhn-Tucker loading/unloading
conditions

$<0, 520, and 7¢=0, (1.3.29)
and the consistency condition .
¥9=0. (1.3.30)

The minimization of £, for given rates é” and & leads to the associated plastic evolution
equations

m.
3
i

=Y

(1.3.31)

QA
i
=2

%lgl %I&n
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A Perzyna-type viscous regularization is obtained by replacing the Kuhn-Tucker load-
ing/unloading conditions (I1.3.29) and the consistency relation (1.3.30) by the evolution
equation

-~

5= 9@ > (1.3.32)

L
for a localized viscous material parameter 7, general scalar function g(-), and Macaulay
brackets < - >* while retaining the evolution equations (1.3.31).

In conclusion, the consideration of strong discontinuities in a local neighborhood of the
local continuum allows for a complete characterization of the bulk and localized responses
of the material. In both cases, the variational structure given by the principle of maximum
internal dissipation can be used for the modeling of the corresponding inelastic effects. We
present in the following section the example furnished by a rigid (visco)plastic slip model.
Still, the above developments have been developed in the local neighborhood 2,. The
inclusion of the resulting localized constitutive model is undertaken in Section L.4.

Remark 1.3.1 The above developments assumed a given unit normal n to the discon-
tinuity surface I;. For the rate-independent limit, this normal is defined by the loss of
ellipticity condition of the underlying continuum model; see e.g. SIMO et al [1993] and
references therein. For rate-dependent solids, a case of special interest herein, it is known
that the problem remains elliptic; see e.g. NEEDLEMAN [1988]. In particular, no strong
discontinuities will appear. As noted in the introduction, and illustrated in Section 1.6,
we still consider the limit situation defined by a strong discontinuity as an efficient mech-
anism to model and capture the localized dissipative mechanism associated to the onset
of strain localization, without the need of resolving the corresponding small length scales.
The numerical simulations presented in Section 1.6 consider a Perzyna-type viscoplastic
Jo-flow theory model (see e.g. SiMO & HUGHES [1997]). In this context, we make use
the result presented in LEROY & ORTIZ [1990] which indicates that a lower-bound for
the appearance of strain localization in a rate-dependent model is obtained by considering
the loss of ellipticity of the underlying rate-independent limit. The argument is based
on a spectral analysis of the linearized governing equations, as studied in detail in e.g.
MOLINARI & CLIFTON [1987], among others. The normal 7 is then obtained as making
singular the corresponding rate-independent acoustic tensor. This approach is employed
in NACAR et al [1989] for the enhancement of finite elements. Note that the formulation
proposed in this last reference does not incorporate a dissipative mechanism along the
assumed discontinuities, in contrast with the approach proposed herein. O

0 ifz<0

* > —
<x>'_{z ifx>0
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I.3.3.1. Model example: a rigid (visco)plastic slip model

We consider in this section the model example of a rigid-plastic slip model as it is
observed in the strong discontinuities resulting from the analysis of continuum models of
the Jy-flow theory of plasticity (see ARMERO & GARIKIPATI [1995,96] for details). The
extension accommodating a viscous response is developed as well.

To this purpose, the rigid response is characterized by the lack of reversible displace-
ment jumps
=0 = ¢P=¢, (I.3.33)

so the localized stored energy function W is simply given in terms of the scalar internal
variable &

W& a)=H(a), (1.3.34)

for some scalar function H(-) defining the cohesive opening of the discontinuity I',. The
localized slipping mechanism is characterized by the slip surface

$(T,q) = ||Tr)| +q— 7y, (1.3.35)

where 7, is the initial shear stress upon activation of the localized slip mechanism, and

|Tr| denotes the Euclidean norm of the tangential component of the traction vector,
defined by

Ndim Ndim
Tr=) Tsmg with Ts:=T -mg and |Tp|?:= > (Tp)?, (1.3.36)
B=2 B=2
for an orthonormal basis {m; =n,...,m, aim) (see Figure 1.3.1). A softening law (I.3.26)
is considered, with
af dH
q=q(a):= ~aa € [0, —7] , (1.3.37)

describing the irreversible response along the discontinuity. The general plastic evolution
equations (I1.3.31) read in this case

T

=7 T (6 = 2,ndim) ,
& =0, (1.3.38)
a=7%,
for the displacement jump components
§1:=€-m and £3:=& -mg, (1.3.39)

together with the Kuhn-Tucker loading/unloading conditions (1.3.29) and consistency con-
dition (I.3.30) for the rate-independent case, or the Perzyna viscous regularization (1.3.32)
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for the viscous case. The connections with classical Schmid models of micromechanics are
to be noted (see e.g. ASARO [1983]). Note that in this rigid case (£° = 0) the relation
(1.3.24) does not hold, and the traction T on I; can only be defined in terms of equilibrium
considerations as described in the next section.

I.4. The Construction of the Local Continuum Formulation

As discussed in Section 1.2, we consider the large-scale problem governing the evolution
of the solid under the standard regularity conditions for the different fields of interest,
including the large-scale displacements u and stresses . The developments in Section
1.3 characterize completely the localized dissipative mechanism that may appear in the
limit case of a strong discontinuity. It is important to emphasize that the arguments
presented in these developments did not consider any length scale parameter. However,
the arguments were developed locally in a fixed neighborhood 2, of the material point
x € 2, the small-scale problem, when our main interest is the solution of the large-
scale problem described in Section 1.2. These two problems have been disconnected to all
practical purposes.

The goal of this section is to connect these two problems by introducing the local
constitutive model developed in Section 1.3 in the large-scale problem as defined in Section
1.2. In particular, this step identifies the length scales that appear in the problem. The limit
case as measure(§2,) — 0 is considered leading to the final formulation involving a local
continuum. Section 1.4.2 presents the application of these developments for the large-scale
regularization of rate-dependent constitutive models. The finite element implementation
of these ideas is summarized in Section 1.4.3.

1.4.1. The final governing equations

The framework developed in the previous sections led to the development of the con-
stitutive relations for the continuum in the local neighborhood §2; and the localized dis-
sipative mechanism on the discontinuity I'; independently. In particular, the tractions T
appearing in the localized constitutive relations were defined by the weak relations (I1.3.19)
on I, but otherwise unrelated to the stress field o in §2,/I;. We note also that the local
neighborhood §2, has not been specified. For the case of a fixed and finite neighborhood,
the resulting formulation defines a non-local relation of the constitutive variables &, as it
is characteristic of the non-local constitutive models as proposed in BAZANT et al [1984],
among others. As noted in the introduction, our goal is the development of a formulation
that maintains the local continuum structure (i.e., the neighborhood f2; is to be consid-
ered in the limit as measure(§2,) — 0), and it is therefore consistent with the large-scale
problem described in Section 1.2. In particular, the large-scale problem defines the local
equilibrium relation (I1.2.9).
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Define the following geometric quantities

Vz = measure(§2,) = / dg, , (1.4.1)

x

and

A, = measure(I,) = or,df, = dry . (1.4.2)
2, Iy

With this notation in hand, we introduce the weak equation

1

——/ 'y‘andﬂx«k—l-/ ~-Tdl, =0 Vye T, (1.4.3)
Ve Az Jr,

T

imposed locally in §2,. Note that the consideration of a material surface I';, assumed
massless in addition, results in no transient terms in (1.4.3).

A simple argument based on Taylor’s expansion shows formally that equation (I1.4.3)
recovers the local equilibrium equation (1.2.9). To this purpose, define the length parameter

hg = —. (I1.4.4)

The case of interest corresponds to the limit h, — 0, with V; = O(h,"¥™) and A, =
O(hz("d‘"‘_l)), so the neighborhood 2, reduces to the point & in the limit. The length
scale h, is chosen as the controlling parameter in this limit process. In this context, we
consider the expansions

o(y) =0+ 0(hs), Y(y)="z+O(hs) Vy € 2, , (1.4.5)

and
T(y) =T; + O(hg) Yyel,, (1.4.6)

where (-); = (-)(x), that is, the value of the corresponding quantity at the fixed point
x € 2. The standard notation for the “big oh” O(-), that is,

O(h’;ck) <00, (1.4.7)

x

lim
he—0

is considered in (1.4.7) and (1.4.6). Introducing the expansions (1.4.7) into (1.4.6), we obtain
[Fon+T]-v: + O(hy) =0 VyeJ, (1.4.8)

so we recover formally the local equilibrium equation (1.2.9) in the local limit as h, — 0.
We note that the Taylor’s expansions considered in (1.4.7) and (I1.4.6) involve regular fields.
In particular, we consider the (smooth) displacement jumps and not the singular strains.
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This situation is to be contrasted with the typical argument that relates traditional non-
local models with higher-order models in terms of a Taylor’s expansion of the total strain
field, which becomes singular (unbounded), making the expansion argument questionable.
See PIJAUDIER-CABOT et al [1995] for a discussion of these issues.

Remarks 1.4.1.

1. As presented in ARMERO [1997b], an alternative argument shows that the relation
(L.4.3) can be understood as the limit h; — 0 of the imposed orthogonality condition

/ oiel 2, =0, (14.9)
2,
between the stresses and the unresolved strain variations e* defined as
1
Eunres = —=(v@n) +(y®n)*or, +0(1), (1.4.10)

for variations v € J. The inclusion of (1.4.10) in (I.4.9) and the use of the relation
(1.3.19) leads to the weak equation (I.4.3) in the case of interest h, — 0. The relation
(I1.4.9) imposes physically the vanishing of the stress power on the variations (I.4.10).

Given (1.3.12), indicating that the large and small-scale strains (e(u) and €,,) differ by
the unresolved strains €,,,.s, the condition (1.4.9) equates the dissipation D,, defined
by (1.3.15) in the small scale to the dissipation observed in the local nelghborhood 2,

by the large-scale problem involving the large-scale strains e(u). Hence, the formu-
lation developed above effectively incorporates then the localized dissipation of the
small-scale response of the material in the (smooth) large-scale problem.

2. Furthermore, by understanding the unresolved strains as an enhancement of the large-
scale strains €(u), the orthogonality relation (I.4.9) falls within the class of enhanced
strain methods, as described in SiMO & RIFAI [1990] in the context of finite element
formulations. It is important to note, however, that in this case the enhanced strains
do not vanish in the limit h; — 0, but resolve the contributions of the localized strains
associated to the strong discontinuity. O

1.4.2. Large-scale regularization of rate-dependent models

The formulation presented in the previous section leads to a local continuum for-
mulation in the limit h, — 0, incorporating the localized dissipation associated to the
localized dissipative mechanism characterized in Section 1.3 by a strong discontinuity. As
noted in Remark 1.4.1.1, the small-scale dissipation D, given by (1.3.15) is incorporated
in the large-scale problem (I 2.5) by construction. Given the localized evolution equations
(I.3.31), the localized part D of the small-scale dissipation can be expressed as

D,=41 on I, (I.4.11)




Final Report, N00014-96-1-0818 37

as a simple calculation shows. The Perzyna viscoplastic regularization defined by (1.3.32)
leads then to

- 5) >
ot

Therefore, for a finite value of the localized viscous parameter 7, we obtain a finite contri-
bution to the final dissipation along the strong discontinuity I';, even in the local continuum
limit h; — 0 (or, equivalently, 1/h; — oo emphasizing the idea of the large-scale limit).

7y, on Iy. (I.4.12)

As noted in the introduction, classical rate-dependent model with strain-softening
incorporating a (continuum) viscosity are known to result in well-posed problems, still
exhibiting the phenomena of strain localization and corresponding localized dissipation but
now in a band of finite width ws. Therefore, the consideration of a strong discontinuity and
the corresponding finite dissipation on it does not comply with this observation. However,
in the large-scale limit (that is, when h; >> wj), the above developments prove to be very
useful for the actual numerical modeling of the localized dissipation observed in the small
scale of the material. We note that in typical large-scale structural applications ws >> L,
for a characteristic length scale L of the spatially discretized solid. The constructive
procedure developed above (that is, the development of the constitutive relations in a finite
neighborhood, and its actual incorporation in the large-scale problems) leads naturally
to the finite element implementation of these ideas. As discussed in Section 1.4.3, this
implementation is based on the identification of the local neighborhood §2, with a finite
element (2.. The case hy >> w; is then of the main interest, since it allows capturing the
localized dissipation without the actual resolution of the small-scale length scales of order
w,. Still, the bulk dissipation needs to be recovered as h, becomes of the order of the
length scale w,. This limit can be easily obtained by the proper scaling of the localized
softening along I, as developed next.

Given these considerations, we impose the condition

= hg) for hy/ws — 0,
Du~{0( ) for ha/ws =0 (1.4.13)

O(1) for hy/ws >> 1,

for some estimate w; of the width of the shear band. Given (1.4.12), this requirement is
easily accomplished by defining the localized viscous parameter 7z, through the scaling law

nl=n"11" where I=min{h;,w,}, (L4.14)

for some finite viscous parameter 7 (units of stress/time). With this scaling and using
(1.3.31)3 and (1.3.32), we conclude that

< g(¢) >
nL

G=5= ~O(hy) ashy—0. (1.4.15)
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Therefore, the localized softening modulus H;,, defined by

D = dg(a)
Hy =HL(a) = R (I.4.16)
is of the order
Hp ~71y-O(hy™')  ashy,—0, (1.4.17)

after normalizing with 7, (units of stress) given (1.3.37). The scaling (I.4.17) is obtained
by considering in this viscous case

H'=H11, (1.4.18)

for a softening modulus M (units of stress), and ! defined in (1.4.14),. The reader is referred
to Section 1.6 for several numerical examples illustrating these ideas.

I.4.3. The finite element implementation

The numerical implementation of the ideas developed in the previous sections follows
along the lines of the finite element methods proposed in ARMERO & GARIKIPATI [1995,96],
without the need of any regularization (smoothing) of the strong discontinuities. We
summarize in this section the main ideas behind these methods and refer to these last
references for further details.

The finite element implementation of the formulation developed above follows natu-
rally by identifying the local neighborhood 2, with a finite element 2, of the assumed
spatial discretization. We consider a piecewise constant approximation of the displacement
jumps

Jh={&. eR™m in 0}, (1.4.19)

for each element 2, where localization has been detected, admitting a straight discontinuity
surface I'.. Higher order interpolations can be accommodated.

The interpolated total strain ez is then given by
ep=e(u) + el e, (1.4.20)

with the unresolved strain is given by (1.3.14) as

1 Y\ S
Eanes = "W (62 ® n(z)) + (52 ® n)s 61", 3 (1421)

the gradient of the discontinuous interpolation function

(@ - 2®) . n®
XG) ’

€unres = V° [(Hr, + NL) €"] with NE =1- (1.4.22)
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FIGURE 1.4.1 Discontinuous interpolation function motivating the
choice of enhanced strain field.

as depicted in Figure I.4.1. See this figure for the notation employed in (1.4.21) and (1.4.22).

In (I1.4.20), the discretized large-scale strains are defined as
e(u") = Bd, (1.4.23)

in a typical finite element 2., where B denotes the standard linearized strain operator
given by a standard finite element interpolation. For example, it may arise from some
isoparametric interpolation of the large-scale displacements

uh = Nhd, (1.4.24)

for the corresponding nodal displacements d, or more generally from an assumed or mixed
interpolation of the strains. The simulations in Section 1.6 consider mixed quadratic tri-
angles with linear (discontinuous) interpolations of the pressure. See Figure 1.6.4.b.

The finite element formulation is based on the discrete counterpart of the weak equa-
tion (1.2.5) and the local nonlinear equation (1.4.3), leading to the set of algebraic system
of equations in the nodal displacements d and the local parameters £".

Nelem
R:= for; — A / BTo(d, ") d2 - Md=0
e=1 2.

sei=— [ o(dend2-TE) =0 inn
Ve Ja,

, (1.4.25)

Nelem

where V., = measure(£2,), A *“™ refers to the standard assembly operator over the n.je,,
e=

elements, and M denotes the finite element mass matrix. We note the independence of
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these parameters from element to element, consistent with the local character of the decom-
position (I.3.1). As a practical consequence, this fact allows the efficient implementation
of the proposed formulation through the static condensation of the local parameters &,
leading to a final system of equations in the large-scale nodal displacements d, after the
consistent linearization of the equations. The resulting large-scale formulation incorporates
the localized dissipation, as it was the original goal of the proposed approach.

I.5. The Extension to the Finite Deformation Range

We extend in this section the previous developments to the finite strain range. To
this purpose, we summarize in Section 1.5.1 the finite kinematics of strong discontinuities,
and develop in Section 1.5.2 the constitutive relations of localized dissipative mechanisms
in the finite deformation range. Finally, Section I1.5.3 summarizes the finite element im-
plementation in this geometrically nonlinear range.

I.5.1. The finite kinematics of strong discontinuities

The finite deformation of a solid occupying the reference placement 2 C R™im ig
characterized in the large scale by the smooth deformation mapping ¢ : 2 — R™im  Ag
it is customary, we denote the material points X € §2 with the corresponding current
position vectors as = ¢(X).

As in the infinitesimal case discussed in Section 1.3.3.1, the response of the material in
a local neighborhood 2x C 2 of a material point X may not be characterized completely
by a smooth deformation field ¢. We consider the case of a strong discontinuity given by
the decomposition

Pu=9+E€Mr, in 2y , (1.5.1)

with the function Mr, defined as in (1.3.1), so € = [¢,] across I'x C 2x, a discontinuity
surface with unit normal N (a material vector). Considering the gradient of ¢y in 2y,
we obtain the expression :

Fy=Gradp+Gr(§) +E®N Orx (1.5.2)

for the small-scale deformation gradient F,,, with a regular part given by
F, = Grady + Gr(¢) . (15.3)

The symbol Grad(-) denotes the material gradient, with respect to the material coordinates
X. The regular part of the unresolved deformation gradient F,,,., is given by

Gr(€) := € ® GradNr, + Grad¢ Hr, in 2., (I.5.4)
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the counterpart of (1.3.9).

The expression (1.5.2) can be written alternatively as
F,=F,(1+J®N), (L5.5)

for the material displacement jump vector
J:=F;[p.] . (1.5.6)
We decompose this material displacement jump in a material coordinate system
J =& M; (summation implied) , (I.5.7)

with M; = N and M; - M; = §;; (orthonormal), defining the convected coordinates £t
We observe that the spatial displacement jump is given then as

| [eu] =€ = {img with m? = F,M; (I.5.8)

i
in the spatial configuration.

The nominal traction T is introduced in this geometrically nonlinear setting as in
(1.3.19) by the relation

/P:(7®N)6p:d.(2$= T-vdl, VvyeJ, (15.9)
Rz r,

in terms of the nominal stresses P (first Piola-Kirchhoff stress tensor). Similarly, we define
the covariant components of the traction as

T=Timz with mj=F;TM,. (1.5.10)

We note the orthogonality relations m? - m, = 6 (the Kronecker delta). In particular, we
g 5 Mg =04

define the spatial normal vector

-T
N

i

ng=mp = : (I.5.11)

not a unit vector, in general.

As shown in ARMERO & GARIKIPATI [1996], the response of the strong discontinuities
in finite strain models of multiplicative plasticity can be characterized by the Lie derivative
of the displacement jumps defined as

£oleu] = F,,% [Fri )] = Fd . (15.12)
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The vector £y[p,] defines a frame-indifferent (objective) rate of the change of the dis-
placement jump [¢,]. Furthermore, combining (1.5.12) with (I.5.8) we obtain

Lolpu] =Eml, (15.13)

in the coordinate system defined in (1.5.8)s.

1.5.2. Localized dissipative mechanisms in the finite deformation range

Motivated by the results in the infinitesimal case, we consider similarly a decomposi-
tion of the stored energy of the material in a continuum and localized contributions

W(F,,I) = W(FTF,,I)+ W(J,I) 6ry , (1.5.14)

where the dependence on the right Cauchy-Green tensor FE F—‘“ for the continuum con-
tribution and J (or alternatively, the components &%) for the localized part is imposed in
accordance with the principle of material frame indifference, as a classical argument shows.
The regular part W of the stored energy function leads to standard continuum models in
{2x [T'x for, say, the nominal stresses P (first Piola-Kirchhoff stress tensor). Furthermore,
we define the frame-indifferent measure

D, =T — W, (L5.15)

along the discontinuity I'x to base the arguments of the derivation of the localized con-
- stitutive relations. Equation (1.5.15) has the same form as its infinitesimal counterpart
(1.3.18) in the considered convected basis.

The formulation of a localized elastoplastic model follows then by considering the
elastoplastic decomposition

J=Je+JP, (L5.16)

in a elastic and a plastic part. We note that the spatial decomposition
E=¢€°4+¢7, (1.5.17)
follows with the definitions
£ :=F,J° and &7 :=F,J7, (1.5.18)

with £ = F,J by (1.5.3). The corresponding expressions in the considered convected basis
read ‘ .
Jé = felMi and JP = fpzMi 3 (1519)

with the elastoplastic decomposition

E=¢"46" (i=1,ngm), (1.5.20)
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of the convected components of the displacement jumps follows.

The same arguments employed in the infinitesimal case lead then to the constitutive
relation

oW :
i = aé_ez (Z = 17 ndim) ’ (1'521)

for the nominal tractions, and ‘
D,=T & + g, (1.5.22)

for the localized measure, with stress-like internal variable q defined again by (I1.3.26). The
stationarity of (I.5.22) among all admissible stress states ¢( ,q) < 0, as done in Section
L.3 for the infinitesimal case, leads to the associated plastic evolution equations

ép =7 BT, (1, = 17ndim) y
- (I.5.23)
Gy 08
- 7 8q ’
together with the Kuhn-Tucker loading/unloading conditions
$<0, >0, and =0, (1.5.24)
and the consistency condition .
46=0, (1.5.25)
as their infinitesimal counterparts. The Perzyna viscoplastic regularization is given by
. <g(e
5= 296> (1.5.26)
L

as developed in Section I.3.

A rigid (visco)plastic slip model is obtained in the same way as discussed in Section
1.3.3.1 for the infinitesimal case. The slip surface (I1.3.36) is considered again with the norm
of the tangential traction vector defined by

Ndim Ngdim
Tr=>) TsMP and |Tr|?= Y T, 6% T, (1.5.27)
ﬂ=2 ,’7_2

for the dual basis M* = M; given the orthonormal character assumed for the material
basis {M;}. The rigid plastic slip equations (I.3.38) hold then in this case

Tp

) o x = § = 2s im)
Ba §% =7 o] (B = 2,n4dim)
a=7,
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with £° = 0, as a simple calculation shows.

Remark 1.5.1 The above formulation corresponds to a fully material characterization of
a localized dissipative mechanism on I',. As shown above, it leads to governing equations
possessing the same form as their infinitesimal counterparts. Alternative formulations that,
for example, do not consider a fixed (orthonormal) material basis {M;}, with the slip yield
condition defined in terms of a spatial norm of the tangential traction vector (involving
spatial, true stress components) can also be developed. Details are omitted. This situation
is similar to the modeling of frictional contact of solids, as discussed in LAURSEN [1994].3

1.5.3. The governing equations and their finite element implementation

The counterpart of the the large-scale problem (1.2.5) in the finite deformation con-
sidered in this section can be similarly expressed in terms of the unknown (smooth) defor-
mation ¢ € V + g,

/pocﬁ-nd()-f-/P:Gradnd9=/pob»nd9+/ t-ndr VneV, (1.5.29)
¢’ o’ 2 or 2

for given initial conditions ¢ (i, 0) = ¢,(x) and H(x,0) = V,(x), with the nominal stresses
P given by the constitutive relations as described in the previous section. Equivalently,
the internal virtual work term can be written as

/ P : Gradn df2 = / 7:V°ndR2, (1.5.30)
2 2

in terms of the Kirchhoff stress field 7 defined as

T=PFT, (1.5.31)
and the spatial gradient defined by
Vn := F;TGradn, (1.5.32)

both using the regular part of the deformation gradient F,.

The localized constitutive model developed in the previous section is incorpdrated in
the large-scale problem (1.5.29) as in the infinitesimal case by considering the weak form
of the local equilibrium equation across the material surface I'y

1 1
———/ 'y-'rnﬂd.Qz+——/ ¥v-Tdl,=0 Vye T, (I.5.33)
VX -QX AX FX

with ng given by (1.5.11), and Vx = measure(f2x) and Ax = measure(I'x) defined as in
(I.4.1) and (1.4.2), respectively.
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The finite element implementation follows then as in the infinitesimal case, leading to
the discrete equations

Nelem

R:=fo:— A / b'rdR-Md=0,
e=1 72 (1.5.34)

Se = 1 g d2-T(EMN =0 in .,
Ve Ja,

for a spatial linearized discrete strain operator b and finite element §2. in the reference
configuration of the solid. The efficient numerical implementation of the equations (I.5.34)
involves again the static condensation of the element parameters £" after their consistent
linearization. Further details can be found in ARMERO & GARIKIPATI [1996], and are
omitted here.

Remark 1.5.2 The general elastoplastic framework developed in Section 1.5.2 allows the
elastic regularization of the rigid localized mechanism defined by (1.5.28). In this way, we
consider the elastic relation

T, = ni§ei i = 1,ngim (no sum), (I.5.35)

for large (penalty) parameters k;. The final governing equations (I.5.23) possess then the
same structure of (infinitesimal) elastoplasticity, allowing then the application of standard
return mapping algorithms for their numerical integration. The reader is referred to SiM0O
& HUGHES [1997] for details. Implementations not involving the regularization (I.5.35)
can be found in ARMERO & GARIKIPATI [1995]. O

I.6. Representative Numerical Simulations

We present in this section the results obtained for two representative examples that
assess the performance of the numerical modeling of viscoplastic strain localization through
strong discontinuities as described in the previous sections. Section I1.6.1 includes the
results obtained in the 1D wave propagation problem in an infinitesimal viscoplastic shear
layer. The benchmark problem given by the simulation of the plane strain tension test at
finite strains is discussed in Section 16.2.

I.6.1. 1D wave propagation problem in a softening viscoplastic shear layer

We consider the one-dimensional dynamic problem of the propagation of shear waves
in a viscoplastic shear layer. Infinitesimal conditions are assumed. A layer width L = 100
and unit thickness is considered, under simple shear conditions, with a fixed left end (v = 0
at £ = 0 and all times) and an imposed sudden shear stress 7, at the right end z = L.
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| L !
I —1
c %o
x *—
To Tc
Localization zone
in the inelastic case
t<L/c t>L/c

FIGURE 1.6.1 1D wave propagation problem. Sketch of the elastic
solution. After reflection at the fixed end the stress doubles in the elas-
tic case. In the inelastic case, the material yields and softens creating
a shear band.

Figure 1.6.1 depicts the definition of the problem, as well as the elastic solution. In this case,
a pulse of constant stress 7, travels along the layer at a constant wave speed ¢ = /G /p,
for a shear modulus G and density p- Upon reaching the fixed end, the stress doubles in
this elastic case, and is reflected back along the shear layer.

In the case of a softening material, a shear band appears at the fixed end upon re-
flection if the yield limit of the material is reached. The problem of a rate-independent
strain-softening material (in its completely equivalent form involving an axial bar) has
been considered in BAZANT & BELYTSCHKO [1985]. In this case, the well-known patho-
logical mesh-size dependence of the finite element solution appears as a consequence of
the inability of a rate-independent material model involving a fixed softening strain/stress
relation to capture the localized dissipative mechanism associated to the shear band. As
noted in the introduction, these difficulties can be traced back to the absence of a material
length scale in such a model.

Closed-form solutions of the wave propagation in a rate-independent localized soft-
ening bar, exhibiting an inviscid strong discontinuity, have been presented in ARMERO
[1997a). Similarly, we have presented in this last reference the analysis of discrete approx-
imations that incorporate the singular fields of the strong discontinuity and thus avoiding
the aforementioned mesh-size pathology in this inviscid limit.

The results presented in NEEDLEMAN [1988] and SLUYS [1992] for this same problem
show the regularizing effects of the inclusion of viscosity in the inelastic material law.
A material length scale is introduced in the material model, leading to finite element
solutions converging to a finite shear band width, and avoiding the pathological mesh-
dependence in the limit, as this material length scale is resolved by the mesh. See the
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FIGURE 1.6.2 1D wave propagation problem. Solutions obtained
with a classical viscoplastic model with strain-softening and a localized
viscous model for a viscosity 7 = 1-10~3. The mesh-dependence for
the classical viscoplastic model for coarse meshes can be seen alleviated
with the use of a localized dissipative mechanism. Legend: — — (h =
10), —-—(h = 5),=-=-- (h =2.5),====(h=1.67),===—(h= 1.25),

—(h=1).
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SOFTENING VISCOPLASTICITY
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FIGURE 1.6.3 1D wave propagation problem. Solutions obtained
with a classical viscoplastic model with strain-softening and a localized

viscous model for a viscosity n = 1-10~1. The

same solution is obtained

in both cases, exhibiting a very low mesh dependence in this case of
high viscosity. Legend: ===— (h = 10), —-— (h = 5), === (h = 2.5),
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aforementioned references for details. However, we should expect a bad performance by
meshes not resolving the very small scale associated to typical materials of interest.

Figure 1.6.2, left column, depicts the results obtained for the viscoplastic model char-
acterized by the elastic relation 7 = G(y — 4P) in terms of the shear stress 7, engineering
shear strain v = 9v/8z and the plastic shear strain 7P. The latter is defined by the
viscoplastic evolution equations

i = < z > sign(r) ‘
&= <;ﬁ;>’ f (L6.1)
¢ = |7| — max{r, + Ha,0} . |

The following material properties are assumed: shear modulus G = 2 - 10%, initial yield
limit 7, = 2, softening modulus H = —1 - 103, and viscosity parameter n = 1-10~3. The
density of the material is p = 2 - 1078, leading to an elastic wave speed of ¢ = 2 - 10°.
The initial sudden shear stress pulse applied to the layer is 7, = 0.75 Ty, leading to the
yielding of the material upon the reflection of the wave. The dynamic governing equations
are integrated through the trapezoidal rule with a consistent mass matrix. A time step of
At = L/(200 c) is employed. The shear layer is discretized with different number of linear
finite elements to study the effectiveness in resolving the localized shear band.

The top, left plot in Figure 1.6.2 shows the displacement distribution along the bar for
this case of (continuum) softening viscoplasticity. We observe for the fine meshes the sharp
gradient of this distribution at the left end z = 0, thus obtaining the expected formation
of the shear band. We can observe the converging approximation as the finite element size
h is reduced. But we can observe at the same time the bad resolution of the final localized
solution for large mesh sizes, leading to a strong mesh dependence for the coarse meshes.
This dependence is illustrated by the plots in Figure 1.6.2. We have included the evolution
in time of the elastic energy in the shear layer

L L 72
Welas = L §‘é‘ dr , (162)
and the total dissipated energy
D=Wert — Weios — K, (1.6.3)

for the applied external work (due to the applied stress at the right end)

t
Woay = / roo(L, 1) dt | (16.4)
0
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FIGURE 1.6.4 Plane strain tension test. a) Problem definition, with
an imposed displacement % at the right end and measured load R; b)
P2 @ bubble /P1 element.

and the kinetic energy
L
K =/ spvidx. (1.6.5)
0

The strong dependence on the mesh-size if the localized zone is not resolved by the mesh
is apparent.

To capture the localized dissipative mechanism associated to the shear band, we con-
sider the localized viscous model developed in Section 1.3 instead of the continuum inelastic
equations (I.6.1), maintaining the linear elastic relation for the continuum. This is done
only in the first element of the fixed end, once yielding is detected. The rest of the shear
layer remains viscoplastic. We note that in this simple one-dimensional example the loss
of ellipticity of the underlying rate-independent softening model occurs at the initiation of
yielding; see Remark 1.3.1. We note also that n = 1 in this one-dimensional case.

The localized softening modulus 7z, and H, are defined through the scaling relations
(1.4.14) and (1.4.18), respectively. The parameter w, in (L.4.14), is chosen as the element
size that resolves the shear band. We note that this parameter is to be understood a numer-
ical parameter and not a material property. The relation (I.4.14), effectively switches from
the localized dissipated mechanism associated to the strong discontinuity to a continuum
dissipative as the element size goes below w;.

Figure 1.6.2, right column shows the result obtained with the localized viscous model.
A value w; = L/100 is considered. We observe the completely different solutions for the
coarse meshes, resolving more accurately the localized solution associated to the appear-
ance of the shear band. Coarse meshes that were unable to give a accurate solutions for
the continuum model lead in this case to meaningful displacement distributions. In par-
ticular, the numerical solutions are seen to capture more accurately the evolution of the
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TABLE 1.6.1 Plane strain tension test. Material properties.

Bulk Modulus K 164.206
Shear Modulus 7 80.1938
Uniaxial Yield Limit Oy 45.0
Viscosity n 1-1073
Localized softening modulus Hy -12.0
Localized viscosity parameter 7, 1-1073

dissipation in time.

Figure 1.6.3 shows the result obtained for a large viscosity n=1-10"1. The solution
in this case is essentially smooth, as shown in the displacement distribution. The localized
viscous model is considered with ws = L/2, leading for the assumed mesh sizes to a scaling
parameter ! = h. In this situation, the mesh resolves the details of the solution, leading
both the continuum and the localized viscous models to the same solution in this 1D
setting. A simple calculation shows that the localized viscous model (I.3.31) is obtained
from the continuum model (1.6.1) with the identifications 4? « £/h (the regular part of the
unresolved strains) and o « &/h in this particular case (b < w;) of the one dimensional
problem.

In conclusion, the proposed formulation, consisting basically of the appropriate scaling
in this simple one dimensional setting, recovers the continuum solution as the spatial
discretizations resolves the details of the localized solution, while leading to a more accurate
resolution of the same in coarse meshes. The “large-scale regularization” of the localization
of the strains in rate-dependent models is effectively obtained.

1.6.2. The plane strain tension test

We consider the plane strain tension test in this second example. Complete numer-
ical analyses of this benchmark problem can be found in TVERGAARD et al. [1981] and
references therein. Figure 1.6.4 depicts the problem under consideration. A 8 x 3 block is
stretched under an imposed displacement at one edge, while considering smooth boundary
conditions at both ends. Quasi-static conditions are assumed in this case. The finite strain
Jo-flow theory of viscoplasticity with the numerical implementation as discussed in SIMO
[1992] is considered for the bulk response, in combination with the finite strain localized
viscous model described in Section 1.5. The material properties are summarized in Table
1.6.1. In particular, perfect viscoplasticity is considered for the continuum model, and a
linear localized softening law given by Ty = 0y/ V3 and the localized softening modulus
Hy. See Table 1.6.1. Due to the symmetry in the problem a small imperfection (0.1%
reduction of the uniaxial yield limit o) is considered in an element of the lower boundary.
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FIGURE 1.6.5 Plane Strain Tension test. Localized viscous model
(n =1-10"3). Solutions computed with the P2®Bub/P1 triangle and
enhanced localization modes in structured (192 and 768 elements) and
unstructured (102 and 199 elements) meshes (End displacement = 0.08,
deformations scaled by 5).

Different spatial discretizations, including structured and unstructured meshes, based on
the P2@bubble / P1 quadratic triangle depicted in Figure 1.6.4.b are considered. This
element can be shown to pass the LBB condition in the incompressible infinitesimal case
(as proposed in CROUZEIX & RAVIART [1973]), avoiding the volumetric locking common in
elastoplastic calculations. We note in this respect, and as discussed below, the appearance
of the localized solution is preceded by a certain amount of bulk plastic flow.

The localized inviscid solution for this problem was reported in ARMERO & GARIKIPATI
[1996]. Figure 1.6.5 depicts the solution obtained in the case of a viscous discontinuity.
The elements exhibiting active enhanced localization modes are shown in gray in Figure
1.6.5. A perfectly viscoplastic material is assumed until localization is detected, resulting
then in the consideration of the enhanced modes modeling the strong discontinuity with
the corresponding localized softening law. A linear softening law is assumed. Elements
outside the path of the discontinuity remain viscoplastic. As discussed in Remark 1.3.1,
the loss of ellipticity condition of the underlying rate-independent solid is considered to
determine the orientation of the discontinuity. A closed-form expression for the current
case of Jp-flow theory can be found in ARMERO & GARIKIPATI [1995]. We note that
the discontinuity is propagated as the solution is computed, with no predetermined path.
The reader is referred to ARMERO & GARIKIPATI [1996] for details on the initiation and
propagation of the discontinuities. -
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FIGURE 1.6.6 Plane Strain Tension test. Load/displacement curves
for the localized viscous model and the inviscid limit model, com-
puted with the P2&Bub/P1 triangle and enhanced localization modes
in structured and unstructured meshes. Legend: Coarse unstructured
mesh, 102 elements (= = =); Fine unstructured mesh, 199 elements
(= - =); Coarse structured mesh, 192 elements (— —); Fine structured
mesh, 768 elements (—).

Figure 1.6.6 depicts the load/displacement curves obtained in this case. The rate-
independent solution is also included. In both the viscid and inviscid problems the solutions
for four different meshes are included. Structured and unstructured meshes, involving
from 102 to 768 elements, are considered; see Figure 1.6.5. Almost a perfect overlapping
of the curves can be observed. The low mesh sensitivity of the proposed methodology is
apparent in this problem. We observe the stiffer response of the viscoplastic solution, with
the appearance and propagation of the localized solution at a later deformation compared
to the inviscid solution.

1.7. Conclusions

The modeling of localized dissipative mechanisms in a local continuum has been ac-
complished with the use of the formalism of strong discontinuities. The case of elastoplastic
discontinuities, and their viscous regularization, has been considered in both the infinites-
imal and finite deformation ranges. In both cases, localized constitutive models have been
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developed locally without the need of the introduction of (smearing) length scales. The
inclusion of these models in the smooth problem governing the large-scale response of the
solid identifies the length scales appearing in the modeling of localized solutions. The limit
of interest as these scales vanish (the large-scale limit) identifies the structure of a local

continuum incorporating the localized dissipation characteristic of the localized failure of
common materials.

A first application of the previous developments is the formulation of sound constitu-
tive models incorporating objectively a localized dissipation. Rate-independent continuum
models are known for the absence of a characteristic length defining the small scales of
the final localized solutions, leading to the limit case of strong discontinuity. The pro-
posed formulation identifies the localized dissipation characteristic of these solutions, thus
leading to a large-scale model of the phenomenon of strain localization with the correct
(objective) energy dissipation.

The large-scale regularization of rate-dependent models has been introduced as a sec-
ond application of the proposed approach. In this viscous case, the continuum models
are known to incorporate the length scales required to define the observed localized dis-
sipation. The small scales involved in these solutions when compared with typical scales
of the practical applications of interest lead to numerical solutions with a strong mesh-
dependence, unless costly spatial discretizations resolving the small scales are considered.
The proposed approach models effectively the unresolved scales through the consideration
of strong discontinuities, the large-scale limit. Furthermore, the proper scaling of the as-
sociated localized mechanism allows the recovery of the proper dissipation as the small
scales are resolved.
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I1.1. Introduction

The failure of many engineering materials is often preluded by the localization of strain
in a narrow zone. In typical metals and soils, these zones involve the localization of the
shear strain and are, therefore, called shear bands. Shear bands are the results of large
plastic deformation and usually a precursor to the abrupt collapse of the material or struc-
ture. Due to its practical and theoretical importance, shear banding has been extensively
studied during the last decades. Typical cases of strain localization include adiabatic shear
banding in metals (BA1 & DoDD [1992]) and shear banding in soils (VARDOULAKIS [1978]),
or the localization of cracking in brittle materials (READ & HEGEMEIER [1984]), among
others. All these phenomena have been observed together with an overall strain-softening
response of the material.

The narrowness of a localized band is a relative term related to its geometrical di-
mension. It can be of order of microns in a ductile metal, or in order of milimeters in
geological problems. This fact shows the existence of internal length scale corresponding
to each material, which requires a multi-scale mechanism to capture the characteristics of
the different scales correctly.

Standard rate-independent constitutive models lack this internal length scale. There-
fore, a localized band of finite length is not possible without further modification of the
constitutive relation. Furthermore, the strain-softening behavior in a local continuum
makes the problem ill-posed, as it has been extensively studied by THOMAS [1961], HILL
[1962], RICE [1976], and NEILSEN & SCHREYER [1993], among many others. In this case,
the mechanical tangent loses its ellipticity, and as a result, the type of the boundary value
problem changes. Due to this inconsistency, finite element solutions are known to exhibit
spurious mesh-size dependence; see e.g. TVERGAARD et al. [1981] and PIETRSZCZAK &
MROz [1981].

The relative narrowness of the localization bands leads to the idea of the infinite
strain in a band of zero width. This limiting process corresponds to a discontinuous
displacement across a surface. The term strong discontinuity comes from the fact that
the solution exhibits a discontinuity in the displacement field, to be contrasted with a
weak discontinuity. In the latter case, the solution has a discontinuity in the strain field.
The existence of strong discontinuities has been shown through mathematical analyses of
the boundary value problem of rate-independent perfect plasticity by JOHNSON [1976] and
MATTHIES et al [1979], among others.

An analysis of wave propagation in a softening bar was done in BAZANT & BE-
LYTSCHKO [1985]. A one-dimensional bar under a stress pulse at both ends starts yielding
when the two pulses meet at the center of the bar. The exact closed-form solution was
obtained by these authors under the assumption of continuum strain-softening upon yield-
ing. Since the inelastic effect were localized on a surface (volume of zero width), no energy
is dissipated in this solution. Clearly, this is not physically meaningful.
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These considerations clearly motivate the introduction of a localized dissipative mech-
anism. In this way, we study in this report the same one-dimensional problem accounting
for these localized effects in the general coupled thermo-mechanical range, extending the
analysis presented in ARMERO [1997a] for the isothermal case. It is well-known that a
large proportion of plastic work is converted into heat (see e.g. BAI & DobDD [1992] Ch.1).
This heat increases the temperature field in a shear band and usually reduces the yield
limit of the material as it is the case in ductile metals. This phenomenon is referred to
as thermal softening. When thermal softening is stronger than mechanical hardening, an
instability may appear and lead to the localization of the inelastic effects in the form of
a band. Furthermore, if it yields fast enough such that there is no time for the heat to
diffuse away from the shear band, the yield process might be called to be adiabatic. For
all these cases, the modeling of the interaction between mechanical and temperature fields
is crucial for the correct characterization of the material response. It should be noted that
due to the nature of heat conduction, perfect adiabatic conditions are always approximate.

The analyses presented herein make use of the concept of strong discontinuity to model
the resulting localized effects. As mentioned above, a localized dissipative mechanism is
required to explain the energy loss during yielding. In this context, SIMO et al [1993] and
ARMERO & GARIKIPATI [1995] presented a localized dissipative mechanism satisfying this
requirement. The final models consist of large-scale stress-strain constitutive relation and
small-scale stress-displacement relation along the discontinuity. We use this mechanism to
simulate the behavior of a strain-softening material. It is also noted that this mechanism is
activated when the problem becomes ill-posed otherwise. The governing field equations, the
linear momentum and energy balance are considered under the assumption of small strain
and small deformation. The temperature field remains continuous, while the heat flow
becomes discontinuous accounting for the localized heat source associated to the plastic
dissipation along the discontinuity.

An outline of the rest of this report is as follows. The first part presents a spectral
analysis of the linearized thermo-elastoplastic initial boundary value problem involving a
classical continuum model with strain-softening. The definition of the problem and several
main concepts are defined in Section 2.1. Then, the linearized stability analyses follow in
* Sections 2.2 and 2.3. The existence of an internal length-scale is briefly remarked here.
The implication of these results based on the linearized problem for the finite element
simulations of the localized solutions are presented in Section 2.4. The appearance of the
mesh-size dependence is illustrated in the ill-posed problems.

The second part of this report deals with the one-dimensional problem of the wave
propagation in a sofening shear layer. An inviscid-elasto-thermoplastic model is consid-
ered. Section 3 summarizes the problem definition and the closed-form exact solutions in
the case of vanishing thermal softening. In fully coupled cases, numerical solutions using
a finite difference scheme are presented. Next, we consider the approximate solution of
the same problem in Section 4. A finite local neighborhood accounting for the localized
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FIGURE I1.2.1 One-dimensional shear layer: problem definition and
elastic solution. A stress pulse propagates at the elastic wave speed ¢,
from both ends. On reaching the center, the stress pulse doubles in
intensity in the elastic solution. For the inelastic case with To > Ty the
localization zones appears at the center.

softening is introduced to model the finite element spatial discretization. The effect of
this discretization is discussed here analytically. Finally, we compare representative fi-
nite element simulations with the analytic solutions. The extentions to multi-dimensional
problems are presented in Section 5.

II.2. A Spectral Analysis of the Linearized Problem

This section introduces the linearized local form of the governing equations , consisting
of the equation of motion and the heat equation. These equations are coupled by the
thermal softening of the material and by the energy release induced by the plastic flow.
No thermoelastic coupling effects are present for the pure shear problem of interest.

In purely mechanical problems, when the mechanical tangent modulus becomes nega-
tive, the equation of motion loses its hyperbolic form and becomes elliptic for the general
dynamic problem. This transition changes the characteristics of its solution. We investi-
gate these issues in this section through a spectral analysis of the linearized problem.

I1.2.1. Problem definition

We consider the one-dimensional problem of a layer under shear stress (see Figure I1.2.1).
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The governing coupled partial differential equations are

or | )

pY = —6—1'. ’
7= G(§—1P),
7=60-), | (I1.2.1)
mP = ¢(7,7",9),
. 0%9 .
pcyd = e + xTYP . )

Here,  and ¢, denote the thermal conductivity and the specific heat capacity, respectively.
The velocity v, shear modulus G, shear stress 7, shear strain v, plastic strain 4?, relative
temperature ¥ and hardening modulus H follow conventional notations. The elastic limit is
denoted by 7.. The equation of motion is expressed in (I1.2.1),, elastic stress-strain relation
in (I1.2.1)2, flow rule in (II.2.1);, and heat equation in (I1.2.1);. The time derivative of a
quantity is expressed by singe dot. An associated plastic potential function

¢ =7 — [1e(1 — we?) + HAP] (I1.2.2)

is assumed in this report, with the linear thermal softening constant wy. Viscoplastic
effects are considered by a constant viscosity 1. The last term of (I1.2.1)4 represents the
heat source produced by the mechanical energy release. In particular, the Taylor coefficient
x represents the fraction of the plastic work converted into heat.

The linearized version of (I1.2.1) at a solution 7o, vo, ¥, 7E, and P are

o= ’
p —-6$,
7.-=G(;y_7p)7

. D 11.2.3
# = —rewod + Hyp +mi7, [ (i12.3)
2

. 0%9 . .
pcyd = KB';;E + x (7P + TyP,). )

A general wave type small perturbations of this problem is given by

7= fel Oz—wt)

v = delOz—wt)

9= @el(,\x_wt), (I1.2.4)
AP = "‘y”el (z\x-wt),

with I := v/—1. A complex wave number A and an angular frequency w are assigned with
full generality. For convenience of the calculations to follow, we use & := ~wI(the complex
angular frequency), alternatively.
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The introduction of the expressions (I1.2.4) into the governing equations (I1.2.3) leads
to the dispersion equation

[a + EN?[(1+ aT)o? + c2(S + aT)\?] - Ra[-Va+ (o +c2A%)] =0. (I1.2.5)

This is the main equation that we analyze in the following sections. Several parameters
have been introduced in (I1.2.5). They are defined as

H XT2wg - )
S = == =
crm T &G+ H)y TP
. "
R: = T: CrH ¢ (I1.2.6)
D
cﬁ::g, Vi= GB/". J
p Te

The nondimensional parameters S and R represent the relative mechanical hardening and
the relative thermal softening, respectively. The range of these parameters is

&w>0, G>0, p>0, G+ H >0,
0<R<1l k20, T>0, (IL.2.7)
-0 < S<1.

Before proceeding to the analysis, we define first several fundamental concepts em-
ployed in the discussions that follow. A solution is called (linearly) stable when the real
part of o is negative, so that the amplitude of a perturbation decreases in time. The term
(linearly) unstable describes the opposite case. In other words, we have

Re(a) >0 — instability ,

I1.2.8
Re(a) < 0— stability . ( )

For the case Re(a) = 0, the multiplicity of the roots (I1.2.5) needs to be investigated.

A related concept is the well-posedness of the problem, as first introduced by HADAMARD
[1903]. It describes the conditions under which the governing equations have a unique solu-
tion depending continuously on the data. Defining §2 := sup, [Re(a)] following ZAUDERER
[1989], we have

2 <400 — well-posed ,

I1.2.9
2 =400 — ill-posed . ( )

Compared with (I1.2.8), it is clear that instability precedes ill-posedness.

In this context, the following analysis is divided into two parts. First, we investigate
the stability for several material properties. Second, the well-posedness of the problem is
studied. Additionally, internal length scales of the problem is remarked.
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I1.2.2. Linearized stability analysis

We rewrite the dispersion equation (I1.2.5) as a fourth order polynomial in ¢, namely,
aoo? + a10® + az0® + aza + as =0 (I1.2.10)

with real coefficients ag to a4 for real wave numbers A, as it is assumed in this section.
Simple algebraic manipulations lead to

Qg = T y
a1 =1- R+ \2RT,
az = A(R+c2T) + RV, (I1.2.11)

az = A2c2(S — R) + M*c2RT,

as = MRS .

The stability (i.e., Re(cr) < 0) of the general quartic equation (I1.2.10) is characterized
by the Routh-Hurwitz criterion (GANTMACHER [1964]). This criterion states that the roots
of (I1.2.10) have negative real parts if and only if

Pi=a;>0 , Pp:= a1az —azag > 0, (II 9 12)
P := a1a2a3—a5a4—a§ao >0, and Py:=a4>0. -

These criteria need to be satisfied for all real wave number A > 0. It is clear from (I1.2.11)
that P, > 0 when R < 1. Manipulations (I1.2.11) and (I1.2.12), we obtain

Py = (1— R)(M*R? + RV) + N2RTRV + A22T(1 — S) + M&2T (I1.2.13)
and
P3 = )\3(1 - 8§)R32T?
+ X(c2R’T[(S — 1)(2R — 1) + RTV] + c!T?&(1 - S))

+X([R(1 = 2R+ S)RV — c}(S — R)(S — 1)]T — 2&(1 — R)R(1 - S))
+ X2c2(1 - R)R(S — R).

(I1.2.14)

From (I1.2.13), since S < 1 always, P, > 0 if R < 1. In addition , the coefficients of \8
and A\ in (I1.2.14) are positive when

3 (S —1)(1 - 2R) (1- R)R(1- S)
T> g max [(1 —8)+&RV/Z’ (S—R)1-5)+VRR(1- 2R+ 9)/3

] (11.2.15)

and
S>R, R<1. (I1.2.16)
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The above conditions show that when we have linear thermal softening, mechanical hard-
ening needs to be stronger than thermal softening, and additionally, enough viscosity is
needed for the solution to be stable. This result takes full account of the heat conduction
effects (through &) and, more importantly, of the elastic effects of the material (finite ce).
This situation is to be contrasted with the classical linearized stability analyses based on

a rigid-thermo-visco -plastic stress-strain law (see the complete survey in BAI & DobpD
[1992]).

We consider next several particular cases. First, the inviscid problem is characterized
by the dispersion relation

boa® + b10? + by + b3 =0 (11.2.17)

with
bo=1—R, b =\E+RY,

b = A2c2(S—R), bs = MEc2S,
from (I1.2.5) by setting T'= 0. The Routh-Hurwitz criterion for this case is given by

(I1.2.18)

P; = b; > O(Z =0,1,2, 3), Py :=b1by — bobz > 0. (11219)
The first condition in (II.2.19) is satisfied if R<1and S > R . However,
Py = X*cZK[~1+ S|R+ X2c2P(S — R) (11.2.20)

and since S < 1, the second condition can not be satisfied for all A\. In other words, the
solution is always unstable under the presence of thermal softening R > 0 when T = 0
(inviscid), for ¢, finite and & # 0, consistent with the remarks above.

In the adiabatic limit & = 0, the dispersion equation reduces to (I1.2.17) with coeffi-

cients
bo = T, bl =1- R,

by = Nc2T + RV, b3 = X*¢2(S - R).

It is observed that Py, P, P,, and P are positive if T > 0, R<1and S > R using
(I1.2.19) and (11.2.21). Additionally,

(11.2.21)

Py =T(1-S)X\%c2 + (1 - R)RY, (11.2.22)

is posifive when R < 1. These results indicate that the solution is stable when S > R and
R < 1, with viscosity T > 0. Here, the existence of viscosity T is sufficient for the stability
regardless of its magnitude.

The case of vanishing T in (I1.2.21) represents the inviscid-adiabatic case. The complex
frequency a is given in this case by the closed-form solution

~RV | JRVI-41-R)(S-R)

“=30-R) 21— R)

CeX . (11.2.23)
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Clearly when S > R, Re(a) < 0, independently of the underlying rate V; in other words,
stability.

I1.2.3. Investigation of the ill-posedness

The complex frequency « is the root of the polynomial (I1.2.5) with real coefficients.
The roots of a polynomial can only become unbounded when the coefficients of the poly-
nomial become unbounded; in our case, A — co. We are interested in the limit values of
Re(a) to decide ill-posedness of a given problem as defined in (I1.2.9). In the following
asymptotic analysis, the solutions in the limit A — oo are investigated to that purpose.

For the dispersion relation (II.2.5), a general asymptotic solution a = a\™ is assumed
(n > 0) for a general complex number a. The introduction of this solution into (I1.2.5)
leads to

a*X*"T + a®A3"[(1 — R) + A2RT] + a®A?*[A\2( + 2T) + RV]

I1.2.24
+ aA[A2c2(S — R) + MC2RT] + MRc2S = 0. ( )

The leading term of the resulting polynomial needs to be zero to satisfy the above dispersion
equation asymptotically. When n = 0, the leading term is A%, so we must have

[ac2RT + Rc2S] = 0. (11.2.25)
Therefore, we conclude that
S
a= —T (11.2.26)

For n = 1, the leading term is A%, and its coefficient is
akT[a®* +c2)=0 = a==lc,. (I1.2.27)
For all other cases of n, a = 0. In summary, we conclude that

:= sgp[Re(a)] < +o0 (I1.2.28)

for all the possible n’s (> 0), showing that the viscosity makes problem well-posed regard-
less of thermal softening or mechanical hardenings.

Likewise, the dispersion relation of the inviscid problem (I1.2.17) and (I1.2.18) becomes
a®A*(1 - R) + @*X*"[A%R + RV] + aX**"c%(S — R) + X\*&c2S = 0. (I1.2.29)
For n = 1, the leading term is A4 and

[0°R +R2S] =0 = a==cVSI. (11.2.30)
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The above equation shows that the real part of the solution is unbounded when S < 0,
that is, when we have mechanical softening. To make A% a leading term, n = 2 is set and

K

[@*(1-R)+d’R]=0 = a=-1—%

(11.2.31)

When R > 1, a > 0 and the solution is unbounded. The solution of the inviscid problem
is ill-posed then when S < 0 or R > 1.

The dispersion equation of the adiabatic problem (I1.2.17) and (II.2.21) becomes
a*N3"T + a®A?"(1 — R) 4+ a(M2c2T + RV) + A>¢2(S — R) = 0. (11.2.32)

When )2 is the leading term, n = 0 and its limit becomes

[T + ce*(S—R)] =0, = a= ——7 (I1.2.33)
as A — 0o. When )3 is the leading term, n = 1 and
[>T + c2aT] =0, = a=+c.I (11.2.34)

asymptotically. The real part of a goes to zero for all n > 1 as A — oo; i.e, the solution of
the adiabatic problem is always bounded and well-posed if T > 0.

The dispersion relation of the inviscid-adiabatic material is presented in (I1.2.23). It
is clear that when S < R, the problem is unstable and ill-posed at the same time since the
second term has A.

Figure I1.2.2 presents a summary of the stability and well-posedness analyses. The
differences of the plots (a) and (b) or of the plots (c) and (d) show the regularizing effect
of the viscosity. The problem is always well-posed in the presence of a viscosity based
on the present linearized spectral analysis. Our interest is in the ill-posed problems. In
this way, an inviscid model will be analyzed in the next sections. Comparison of the two
inviscid models (b) and (d) reveals also the regularizing effect of the thermal conductivity
k. However, the effect is weaker than that of viscosity in the sense that it can not regularize
the mechanical softening (S < 0) and excessive thermal softening (R > 1).

Remarks I1.2.1.

For the well-posed problem, we can define an internal length-scale [ as
17! = Apoz = arg [sup[Re(a)]} . (I1.2.35)
A

Note that for the ill-posed problems A,,,; — o0, implying no internal length-scale.
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FIGURE II.2.2 Summary of the stability and the ill-posedness con-
ditions: (a) General thermo-viscoplastic material (b) Inviscid thermo-
plastic material (c) Adiabatic viscoplastic material (d) Adiabatic invis-
cid material. (*) if condition (I1.2.15) of enough viscosity is satisfied

for (a)

I1.2.4. Evaluation of the mesh-size dependence of the finite element solutions

Previous subsections deal with linearized problems analytically. To evaluate the gen-
erality of those results from the linearized model, the fully nonlinear problem is solved
using the finite element method. The one-dimensional problem of interest is considered,
with a Heaviside step function type dynamic loads at both ends. When both waves meet
at the center, its magnitude doubles in the purely elastic solution. In the inelastic case, the
material starts yielding. This situation is described by the governing equations (I1.2.1).
The initial yielding time is set as ¢ = 0 and the time when the bar yields completely
is denoted as t,. The problem are run using meshes with a different number of equally
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FIGURE II.2.3 Spatial distribution of the displacement with four
different material properties for the elasto-thermo-viscoplastic mate-
rial. S and R denotes relative material hardening and relative thermal
softening, respectively.

distributed linear elements in the displacement and temperature.

To see the characteristics of four different types of materials modes discussed in the
previous sections, four different simulations are carried out. We set the a general material
as one for which the thermal conductivity & and viscousity 5 do not vanish. By considering
the inviscid limit and the adiabatic limit, four types of materials can exist; i.e., Thermo-
viscoplasticity, inviscid thermo-plasticity, adiabatic-viscoplasticity, and inviscid adiabatic-
plasticity.

Also, each material has the possible range of thermal softening R and mechanical
hardening S. It is assumed that R < 1 and three possible domains of $ > R, 0 < S < R,
and § < 0 are selected for the study. In the last case, R > 1 is tested.

The displacement distribution in half of the domain [0, L/2] at t = 2.5¢,, is for each
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FIGURE I1.2.4 Spatial distribution of the displacement with four dif-
ferent material properties in the inviscid elasto-thermo-plastic material.
S and R denotes relative material hardening and relative thermal soft-
ening, respectively. Cases (c) and (d) correspond to ill-posed problems
according to the analyses of Section 11.2.3.

case presented in Figures I1.2.3, I1.2.4, 11.2.5, and I1.2.6. The general viscous material
in Figure II1.2.3 shows convergence in all cases, which is consistent with the conclusion of
the linearized spectral analyses. Smooth lines of the displacement due to the viscous effect
match closely for different meshes. As expected, a large displacement is developed at x = 0
in the case of R > 1 due to the strong thermal softening. Comparing with the three other
materials (i.e., inviscid, adiabatic, and inviscid-adiabatic), solutions are almost identical
for R > 1. The strong thermal softening leads to a localized solution at z = 0; note the
sharp increase of the displacement at that point.

An inviscid material is tested in Figure I1.2.4 with positive conductivity. When § >
0, the finite element solutions for different meshes converge to a unique one as long as
R < 1. The viscous adiabatic solutions are presented in Figure I1.2.5. Based on the
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FIGURE 1I1.2.5 Spatial distribution of the displacement with four
different material properties in the elasto-adiabatic-viscoplastic mate-
rial. S and R denotes relative material hardening and relative thermal
softening, respectively. All four cases define a well-posed problem ac-

cording to the analysis of Section I1.2.3.

analysis of Section II1.2.3, the problem is always well-posed, as shown by the displacement
distributions. show it well. Figure I1.2.5(d) shows the development of a sharp localization
band due to the lack of enough viscosity. Compared with the general viscous problem with
positive conductivity, this adiabatic problem is seen to be more unstable. Figure I1.2.6
presents the solutions for the inviscid adiabatic material. When S < R, the displacement
distribution shows mesh-size dependence reflecting the ill-posedness of the given problem.
The last graph has a unique solution, in which the material yields almost instantly due
to very strong thermal softening and the left end of a bar moves freely. Then the whole
domain of a bar is elastic and it is a well-posed dynamic problem.

These results allows to conclude the close relation between the ill-posedness of the
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FIGURE 11.2.6 Spatial distribution of the displacement with four
different material properties in the inviscid elasto-adiabatic-plastic ma-
terial. S and R denotes relative material hardening and relative thermal
softening, respectively. The only well-posed case is (a), according to
the analysis of Section 11.2.3.

linearized boundary value and the mesh-size dependence of the finite element solutions.
The ill-posedness of these problems is studied in the following sections. In fact, the ill-
posedness is removed by the introduction of the localized dissipative mechanism associated
to a strong discontinuity. As shown next, this consideration leads to a problem exhibiting
a physically meaningful solution; a solution that can be obtained analytically.

I1.3. An Analysis of Wave Propagation in A Localized Thermo-
ElastoPlastic Shear Layer

In the previous section, we investigated the ill-posed problems and observed that those
problems have spurious mesh-dependence in standard finite element method simulations.
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To eliminate this ill-posedness (and, in addition, the mesh dependence of the numerical
solutions), we introduce a local dissipative mechanism as developed in ARMERO [1997a] to
the analysis of wave propagation of the shear layer. The problem is described in Section 3.1,
with the analytic solution to this problem derived in Section 3.2 for a particular simple

case. Several parametric studies are presented next to characterize the thermo-plastic
behavior.

I1.3.1. Problem description

Consider a homogeneous shear layer occupying 2 = [—L, L] with constant unit cross
section and density p, initially at rest. This layer has constant specific heat ¢, and thermal
conductivity k. The elastic limit stress is the function of relative temperature increase
¥(z,t). We write this limit stress as 7,0(t) for convenience, with 7, being the elastic limit
at the reference temperature with ©(0) = 1 without loss of generality. Upon yielding, the

material follows a softening law §(&,?). Here, & is the displacement-like internal variable
on a surface.

The assumed thermal boundary conditions at = +L are of zero heat flow (insulated
boundaries). A constant stress 0 < 7, < 7. is applied at both ends z = +L. A purely
mechanical linear elastic response is obtained initially. The one-dimensional equation of
motion expressed in displacement w is,

2 2
%:é% with ¢, ;=1/%. (IL3.1)

In the elastic range, the solution of (I1.3.1) involves a rectangular stress pulse of value 7,

propagating toward the center of the layer from both ends. Strain and velocity pulses are

easily obtained as
T
Yo = é and v, = CeYo. (11.3.2)
The two pulses meet at the center of the bar at a time that we set to ¢t = 0. At this stage,
the whole layer is at a stress 7, and strain +,, so we can write

u(z, t)|t=0 = u(z,0) = v,z. (IL.3.3)

The equations (II.3.2) and (II.3.3) are the initial conditions of the problem. When 7. > 27,
the material does not yield upon at the center, and the displacement solution of (I1.3.1) is

u(Z,t) = Yo (T+Cet) + Yo - (x — cet)H(cet —z) for >0 and c.t < L. (I1.3.4)

Here, H(x) denotes the Heaviside step function. We assume that L > ct, so the need to
consider the reflections at £ = +L is avoided. Our interest is in the case of Te < 270, and
following sections deal with the analysis of this problem.
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I1.3.2. Exact solution for a localized softening model

We obtain the exact and numerical solution under the consideration of a strong dis-
continuity with a localized dissipative mechanism with thermal softening. For the case of
a localized rigid-plastic mechanism (ARMERO [1997a]), the displacement jump ¢ does not
have elastic part and the ¢ is assumed to follow similar rules as classical plasticity theory.
In case of associative plastic flow, we can write the equations

¢=|T| - §(&v) <0

'=~sinT

¢ =7sien(T) (IL3.5)
a=vy

7>0, =0, 5¢=0

for the displacement jump £(t) at = 0. The function ¢ represents yield function, which
consists of the surface traction T" and yield stress . The positive parameter 7 identifies the
rate of evolution of the displacement-like internal variable &. The relations (11.3.5)4 cor-
respond to the Kuhn-Tucker loading/unloading conditions. Under the monotonic loading
with T > 0,

0 < &(t) = a(t) (11.3.6)

since both are initially zero. Instead of using £(¢) explicitly, we introduce the notation
do(t) = w(0t,t) = —u(07,t) = £(t)/2, t>0, (11.3.7)

for the displacement at the center of the layer z = 0*.

Upon releasing at = 0, the rest of the bar remains elastic so that the elastic solution
is valid with additional dy contribution.

u(z,t) =7 - (T + cet) + [fyo (T — cet) + do(t — -:i;) H{cet — ) (I1.3.8)

for £ > 0 and z > 0. The entire layer, except at z = 0, is elastic and the stress distribution
is given by

(2,8) = o + [10 — Zdo(t — Z)|H(cot — ), (I13.9)
Ce Ce
and in particular, at z = 0%,

G

Ce

To (t) = 27, — —do(t). (11.3.10)

Given this stress distribution, the velocity distribution is given by

v(z,t) = v, — [v,, —do(t — —2)} H(cet — x). (I1.3.11)
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The traction T at z = 0 in (I1.3.5) is the same as 7,.(t) by local-equilibrium condition,
T = o, (11.3.12)

Given the definition of do, we have §(&,do) = 7(2do,¥o). Here, 9 := ¥|z=0- Note that
the temperature field remains continuous. Upon yielding, the traction T at z = 0 becomes
identical to §. As a result,

T = §(2do, 9o) = 27, — cgd'o(t). (11.3.13)

The energy release rate D, is defined as the difference between the external power and
the rate of change of total mechanical energy. This released energy is mainly transformed
into heat flux considering global energy conservation. These two results are explained by

the relations
1 d|ffrn , 172
§Dp(t) = TV — pr [/0 l:ipv + 55—] dx

) (I1.3.14)
= To4+do(t)
= qo+ (t)v
with the heat flux ¢ given in terms of the temperature by
09
= —K— I1.3.1
q0+ Ra.’l) . ) ( 3 5)

the 1/2 factor accounts for the symmetry in the problem. The problem then reduces to
the heat equation and the ODE (I1.3.13) , with relation (I1.3.14) appearing as a boundary
condition at £ = 0. The complete system of equations to be solved simultaneously is

then,
2

.2 w
c,,p19=n5x—§ in (0, L)
- G ;
§(2do, ¥o) = 27, — c—do(t) 0 (11.3.16)
oY
Q0+(t) = Koz o)

This represents a coupled system of differential equations and, generally, these equa-
tions are nonlinear due to (I1.3.16),. In some simple cases, though, the exact closed-form
solution can be obtained.This solution will become a basis for the verification of more
complex models.

The softening law §(2do, 9o) has §(0,0) = 7. and is assumed monotonically decreasing
to § = 0 for some value of dyp and . A simple case is given by the linear function of dy
and 9y,

¥(2do, ¥o) = Te(1 — wodo) + Hy, - 2dy (I1.3.17)
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with linear hardening/softening modulus Hy and linear thermal softening constant wg. It
should be noted that Hy has the units of stress/length. In this case, the equations (I1.3.16)
can be written as,

20 ‘
Pt = "oz2
G .
27-0 — E—-do = Te(l — 'U)o’l90) + 2HLd() > (11.3.18)
. 09
t)do(t) = —k—
ou(tdolt) = <3| |

If thermal softening constant wy vanishes, (I1.3.18); becomes uncoupled, consisting of
the ODE (I1.3.18)2, with closed form solutions,

do(t) = 22?06 [1 — exp (:E%L—ce—t)] (1I1.3.19)

where A := % (27, — 7). This solution is valid up to the time when 7o, = 0. We refer to
this time as the uncoupled breaking time t;, and is given by

G 27,Ce
= - 1 — . 11.3.

After complete yielding, (that is, setting (I1.3.17) to zero) it results in

: 2Toce
do(t) = = 20, ,

o) =—g =2 } (I1.3.21)
do(t) = do(tb) + 2’1)0 . (t - tb) N

for t > t5,. During the time between t = 0 and ¢ = t;,, the rate of energy release is
calculated from dy(t) as

gdo (t)} - do(t)

[y _CA_ (=2Hict\] .. (-2Hicet
T | T &P G P\T /)

In the above equation, go; is the heat flux generated by the mechanical energy release.
We relate heat flux g to temperature gradient through Fourier’s law

qo+ = [270 -
(11.3.22)

qg= -—ng—i, (11.3.23)

so a Neumann boundary condition is obtained z = 0. Using Green’s function (ZAUDERER
[1989]) for semi-infinite bar (L > c.t is assumed) with initial condition 9(z,0) = 0 and
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boundary condition above, the temperature evolution of the layer at = 0 is exactly
expressed as

Bo(t) = --2% exp(2at)v/2a Exf (\/ﬁ) + gexp(at)\/aErf (\/Et‘) , (I1.3.24)

for 0 < t < tp, with constants a = i}gf&ﬂ, b= % ,d= l;\/_g%. The error function
Erf (t) is defined as
2 :
Erf (t) := ——/ exp (—2%)dz. (I1.3.25)
V7 Jo )

In summary, equations (I1.3.8), (I1.3.9), (IL.3.11) and (I1.3.24) correspond to the exact
closed-form solution of the considered problem, defining the distributions in space and
time of displacement, stress, velocity and temperature, respectively.

Remark II.3.1 The above considerations assume that the response outside the strong
discontinuity at the center of the shear layer is thermoelastic. No consideration is given
to the possible thermal softening, and corresponding inelastic response, outside the dis-
continuity. Numerical experiments show that these effects are small compared with the
main contribution given by the response along the discontinuity. In fact, the finite element
solutions presented in the following sections consider the full thermplastic response outside
the discontinuity and still a good comparison is observed with the analytical solutions pre-
sented in this section. We plan to present a more detailed analysis of these considerations
in a forthcoming publication. O

I1.3.3. Parametric study

We obtained the exact solution for localized softening model with no thermal softening
(wo = 0) in the previous section. We consider in this section the solution of the general
case wo # 0. these solutions are obtained numerically by solving (I1.3.18) with Foward
Cauchy-Euler (for time derivative) and Centered difference (for spatial derivative).

I1.3.3.1. Nondimensional parameters

The solution (I1.3.24) leads to the consideration of the non-dimensional parameters
In =9/9,,
- tn=t/t,, (11.3.26)
IN = z/z,,
with . .

Te

pvV—Hpcecok’
. G 3 (I1.3.27)
T HLCe,

zr = \/tr/(pcy).

4, =
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With all these nondimensional variables, two parameters are found to govern the evolution
of the distribution of the normalized temperature. The two parameters are defined as

4.8
) wyT, 27,
=t d = — I1.3.28
41 GpPr2c2H? and p2 Te ( )

The parameter p; includes all the material properties of the layer. The parameter p,
measures the relative strength of the initial stress pulse. It can be said that we have all
the same behaviors in normalized space of time and distance if p1 and po are fixed. In this
context, p; can be considered as the intensity factor of thermal softening because all other
material properties can not vanish generally.

The default geometric and material properties of the layer are listed in the table,

3\

7o = 150N/mm?
7y = 200N/mm?
G = 20000N/mm?
p=2-10"°Ns?/mm?*
ce = 100000mm/s
wo = 1.7321- 10741 /K 1
Hy = 3000 - (~1)N/mm?2/mm
k = 40N/sK
¢y = 1000mm? /s’ K
L =2 4c.tp, (20mm)

' (11.3.29)

J

where L is the length of the layer, & is the thermal conductivity, and ¢, is the specific heat.
The assumed parameters correspond to p; = 1.0 and p; = 1.5. These parameters are then
varied by changing the thermal constant wy.

I1.3.3.2. Properties of the solution

Figure I1.3.1 includes the spatial distribution and Figure I1.3.2 the temporal evolu-
tion of different thermo-mechanical quantities for the four different values of the non-
dimensional parameter p;. The general trend of the solution is that thermal effect accel-
erates material softening, especially in an early stage of yielding.

In the limit as p; becomes large, it yields almost instantly. In other words, the left
boundary behaves like a free end. We can also observe that in that limit, returning stress
wave vanishes in Figure I1.3.1(c). Consequently, at z = 0% it loses its whole stiffness and
displacement jump evolves at constant rate 2c.7,/G. This behavior is expressed as the
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FIGURE II.3.1 Displacement, velocity, stress, and temperature dis-
tribution along the shear layer with four different material parameter

4_8
WA T, . . .
P1 = —525—. The parameter p; is a nondimensional factor for
Gp°récy H

the intensity of thermal softening.

near straight line in Figure I1.3.1(a) and 11.3.2(a) (for p; = 100). However, this numerical
simulation was done to exaggerate the thermal softening effects by intensity p;. Real
materials have 0 < p; < 1.0 generally. With linear thermal softening, breaking time
decreased and the shape of stress curve changed in Figure I1.3.1(c) and Figure I1.3.2(c).

The localized zone of temperature is generally a function of density, specific heat and
conductivity because it is based on the solution of heat equation. In normalized space,
the length of localized zone is almost fixed in Figure I1.3.1(d) regardless of the value of
p1. Figure I1.3.2(d) shows time evolution of temperature increase at z = 0. We observe
that initial curves of each value of p; follows the same path. As p; increases the elastic




I

Final Report, N00014-96-1-0818 81
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FIGURE I1.3.2 Displacement, velocity, stress, and temperature evo-

lution in time at z = 0% with four different material parameter
1U4Te8 . . .

p1 = —G—;ﬁzggg. The parameter p; is a nondimensional factor for

the intensity of thermal softening.

limit stress decreases and it bifurcates from the increasing curve of p; = 0. This is the
direct result of energy release. Figure I1.3.5(a) is the graph of released energy versus time.
Each curve follows one path and makes branch by the value of p;. Parameter p; does not
change the rate of energy release, but makes t; smaller. Finally, the level of total released
energy is determined by tp.

Second experiments deal with four different values of p, with p; = 1.0. Figure 11.3.3
and Figure I1.3.4 are spatial distribution and time evolution of thermo-mechanical quan-
tities. The effect of py is that it magnifies responding mechanical quantities because p;
directly represents relative strength of external loads.

Parameter p; has finite range of 1.0 < pz < 2.0 so that ¢, has its limit which is larger
than zero (Figire I1.3.4(c)). In the tested range of parameters, breaking time ¢, decreases
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FIGURE I1.3.3 Displacement, velocity, stress, and temperature dis-
tribution along the shear layer with four different boundary condition

parameter ps 1= 2%‘1 The parameter p2 is a nondimensional factor for
the external load.

in I1.3.5(d) as po increases.

The parameter p, changes the rate of energy release: Larger load increases the rate.
We can see this result in Figure I1.3.5(c). It shows that it breaks earlier with almost
the same total released energy as p, increases. Consequently, it has higher peaks in tem-
perature evolution when p; is larger (Figure I1.3.4(d)). Due to the same level of total

released energy, temperature distribution becomes closer for all cases after some time
(Figure I1.3.3(d), Figure I1.3.4(d)).




Final Report, N00014-96-1-0818

83

(a)Displacement jump,x=0+

w

—p2=1.3
- p2=1.5
- -p2=1.7
--p2=1.9 e

Displacement, u m/(2 e0)
- N

(=}

0 0.5 1 1.5 2

Time, t4_b
(c)Stress, x=0+

W

\

0 0.5 1 1.5 2

Time, t/(t_b)

Velocity, v/v0
o . n
o n - (3,} N [4)]

(b)Velocity, x=0+

0 0.5 1 1.5 2

Temperature, T/T

Time, tt_b
(d)Temperature, x=0

FIGURE I1.3.4 Displacement, velocity, stress, and temperature evo-
lution in time at £ = 0% with four different boundary condition pa-
rameter py := 27"} The parameter p2 is a nondimensional factor for

the external load.

I1.4. An Analysis of the Approximation of Strong Discontinuities

In this section an analysis of the approximation of the exact model is presented. The
approximated model is important in the sense that it can predict the behavior of finite
element model if we identify the local neighborhood 2, as f2., finite element.

We approximate the step function type strong discontinuity by a ramp function type
continuous displacement in a finite local neighborhood 2, with size h, > 0. The tempera-
ture field is assumed to be regular throughout the domain. Qur main goal is to investigate
the effect of spatial discretization to energy release and its interaction to thermo-mechanical
behavior. Every result is based on exact closed-form solutions discussed in the following

sections.
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FIGURE I1.3.5 (a) Time evolution of the energy release, (b) Breaking
time variations with p1. (c) Time evolution of the energy release, (d)
Breaking time variations with pa.

I1.4.1. An approximate solution for h > 0: analytic results
The regularized displacement field is described by
2z
w(e.t) = d%(t) 2 for 0<x<h/2,
a(z, t), for z2>h/2,
for a fixed parameter h > 0. That is, we consider a linear approximation of the displace-

ment u(z,t) in the local neighborhood 2, = (—h/2,h/2) of £ = 0. The displacement
@(z,t) is a general function assumed outside §2,. For continuity of displacement,

(IL.4.1)

a(g, t) = dy (t). (I1.4.2)

The effect of spatial discretization is neglected and assumed to be exact outside §2,. The
relative temperature field ¥ is considered to be continuous everywhere. We only consider
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the effect of regularization of strong discontinuities within £2,. The domain outside of {2,
is always in elastic range and then

r=G2 for z> h/2. (I1.4.3)
(From (I1.4.1), the material response inside the local neighborhood §2, is calculated as

TR, = G-d

sdy in 0, (I1.4.4)

until the elastic limit of material 7. is reached. After this limit, the material response in
{2, is determined by the displacement jump £(£) of the small-scale displacements at z = 0.

2 1 .
T0, =G (ﬁd% - _i;£> in (2, (I1.4.5)

for the material response in 2,/I5. Given the constant approximation of strain and stress
(4.5) in £2,, small-scale equilibrium equation is derived

9 [h/2

T(E,0) = -

Tdr =710, (I1.4.6)

with T'(€, ) given by the localized model at z = 0. Combining (I1.4.4) and (I1.4.6) gives
the equation showing relation between the displacement jump &(t) and d K,

£+ g—T(f, J) = 2dp. (I1.4.7)

For linear softening function of £ and general one of ¥, the softening law is defined as
T(&,9) =71.60(9) + HL£ (I1.4.8)
with linear softening modulus H;, < 0 and ©(0) = 1. Now (I1.4.7) is expressed for £ with

the help of (I1.4.8),
¢ —2— [dh - 5769}

-0 m
I1.4.
. Gm %9 (I1.4.9)
™R, = —5 —d %
using (11.4.5). Here, m := _Zfla d = m% = -4%& and these equations are valid up

to the breaking time t;, which corresponds to the displacement d 3 (ts) = O4e/m. After
breaking time, displacement jump ¢ is determined by (I1.4.7) with T=o.

{=2ds, and 7q, =0, (11.4.10)
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during assumed monotonic loading.

¢ From the weak form of linear momentum balance, we reversely have two strong forms

0% 0%
a2~ “epa2

h X o0t
for z> 5 with ﬁ(L’ t) = 7o, (I1.4.11)

and

J -
a%d% +70, =5, =0, (I1.4.12)

in the unknown function d A (t) and a = 1/3 for the consistent mass approximation. The
solution of equation (4.12) is given by

x—h/2

(]

w(z,t) = Yoz + cet) + ['yo(:r —cet—h)+ dy (t— )} H(cet — z + g), (I1.4.13)

and

7z, t) =710+ ['ro — gdg] H(ct—z+ ﬁ),
Ce 2 2

A (I1.4.14)

e

0o,t) = v+ v+ do - )| et -2+ B,

for x > h/2. Inside the local neighborhood 2,,

u(z, t) = -2h—$d

v(z,t) = %?d%

1)
2

(I1.4.15)

for z < h/2. Substituting (I1.4.13) in (I1.4.3), we obtain

Ty, (1) = 275 — Ed% (t). (11.4.16)

Ce
Using (I1.4.4) and (I1.4.16), differential equation (I1.4.12) reads

me,
3 d

d dn +ds +
mcee 2 2

o B =27cC (I1.4.17)
for t < t., which denotes the time when the elastic limit is reached. The time ¢, is defined
o 2

To,(te) =7 and dy(t) = 5% = % (11.4.18)
from (I1.4.4). In this time period, ¥ = 0 and temperature field is uncoupled with displace-
ment field. The initial conditions for d » are determined by initial elastic solutions,

d (0)=%zlm=h/z=6%", and dy(0) = v,. - (IL4.19)

(SRS
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Upon activation of the softening response on the discontinuity z = 0 at t,, (II.4.5) and
(I1.4.16) leads to another differential equation of d A

6 : mee _ Y@

amced% +d% — 1 —(Sd% = [Z’yo 1% Ce (I1.4.20)

for t. <t < ). The breaking time ¢, is determined by

YeO
T(f(tb), Iz = 0,t)) = To,(t) =0 and d% (ty) = - (II.4.21)
After breaking, equation (I1.4.12) reads

O Gy tds =2 11.4.22
a%%+%—%ce (I1.4.22)

for t > ty.

We set up all the governing differential equations with initial condition (I1.4.19). The
closed form solutions of (I1.4.17), (I1.4.20) and (I1.4.22) are respectively

2 o o 20-1
ds (t) = a% - alyn; [cos (wit) — —% sin (wlt)} exp (—et) (I1.4.23)
for0<<t<t,,
dy(t)=(O-(1-8)n 2 4+ 221 € (985 iy _(1-6)) s h (wa(t ~ te))
A " r m |wy \v, 3¢ S lwz €
+ %(1 — §) cosh (wo(t — te))] exp (—€(t —t.)) for t.<t<ty, (I1.4.24)

exp (—2¢(t — tp))

mr 2¢ 2¢

d% (t) _ [2’)’0@(tb) _ 2vu, — d.% (tb)} 4 2v, — d% (tb)

+2u,(t —tp) for t>t,, (I1.4.25)

‘ 46
€= 4 =evda—1, and wy 1= €4/1+ —.
2a6 1-4

Temperature field ¥ and ©(9(0,t)) is calculated by energy release rate D,, which is
given by

where

D,=0 for t<t. and D,=71o,f for t,<t<t. (11.4.26)
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The approximated temperature field is described by

19o+3,%[19%——190], for 0<z<h/2,

a I1.4.27
¥z, t), for z>h/2, ( )

9z, t) = {

The introduction of the variations 7 corresponding to the class of functions (I1.4.27) in the
weak form of the heat equation

L L op a9 -
/0 pc,9n d:c—-/(; 95, dz = KMo (11.4.28)
leads to
h h
z . . .+ 2T 2z 2 2
) eldet 3y =30 T+ oy = n) Y e [ -y~
0 0
(I1.4.29)

L . L aﬁ
+ [ pedi da - /_ 45) do=n,D,/2

2

for all variations 7, and # with 7(h/2, t)=n B After integration by parts, we arrive at the
equations

. 029 h . oY
pcy¥ = Kooz for z> 2 with E(L’ t) =0, (11.4.30)
and the equation
1. 1.
pcuh[g'l% + E'ﬂ%] +4q0, = Dp/27
12 (I1.4.31)
pcvh[ﬁ’lgo + 619121_] —4qn, + Q%_i_ = 0.

Here, heat flux are defined as

2
an, = ——n;l—(ﬂ% — )
39 (I1.4.32)

40, ‘= —K— .
g’ oz z=%

I1.4.2. Properties of the solution

In this section, parametric study of § is presented. Figure I1.4.1 depicts the distribution
of the displacement, velocity, stress and temperature field along the bar at ¢t = 2.5¢;. Figure
I1.4.2 is the graph of the evolution of displacement, velocity, stress and temperature at
z = h/2 in time. Eleven different values of length parameter § -0.001, 0.1, 0.2, 0.3, 0.4,
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FIGURE 1I1.4.1 Displacement, velocity, stress, and temperature
distribution along the shear layer for nine different values of § =
0.0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8. Parameter p; = 1.0 x 104 and
p2 = 1.5 are fixed.

0.5, 0.6, 0.7, 0.8 — are considered with linear softening law. Thermal softening function ©
is also considered to be linear, namely,

6(9(0, 1)) = 1 — wed(0, £) (I1.4.33)

with thermal softening constant fixed. For comparison with pure mechanical results, pa-

rameters p; = 1.0 x 107¢ and p, = 1.5 are selected. A consistent mass approximation
(a =1/3) is assumed.

The kinematic quantities have similar characteristics of purely mechanical results in
ARMERO [1997a]. The noticeable differences in t; is the main effect of thermal softening.
In Figure I1.4.2(b)- I1.4.2(d), we can see that the breaking time ¢, comes earlier than
normalized time 1.0 regardless of 6. Increased temperature lowered the elastic limit 7,



F. Armero 90

(a)Displacement, x=h/2 (b)Velocity, x=h/2
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FIGURE II.4.2 Displacement, velocity, stress, and temperature

evolution in time at z = % for nine different values of § =

0.0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8. Parameter p; = 1.0 x 10~% and
p2 = 1.5 are fixed.

which causes ¢, smaller. This phenomenon was examined in Section I1.3.1 and can be
predicted by the uncoupled relation

1 1
ty, = — log (1 - ;), (I1.4.34)

with r = 27, /7.

In Figure I1.4.2(c), time evolution of stress g, is depicted. It also shows similar
results to ARMERO [1997a] of pure mechanical problem: ¢, and t, move closer to each
other as § increases. One notable difference is that slope of stress evolution curve slightly
increases as time goes on . This is related to the stabilizing effect of thermal conductivity
and this topic was discussed in Section II.2.
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FIGURE 1I1.4.3 Displacement, velocity, stress, and temperature
distribution along the shear layer for six different values of § =
0.0298, 0.0594, 0.1463, 0.2857, 0.5455, 0.8571.
for comparison with Figure I1.4.1. Parameter p; = 1.0 x 10~4 and

p2 = 1.5 are fixed.

Finite Element solution

Time evolution of temperature is in Figure I1.4.2(d). Maximum temperature decreases
as § increases up to J = 0.8 . However, it converges to one after complete breaking.

I1.4.3. Representative finite element simulations

" We consider the shear layer which is described in Section I1.3.1. The model of this
layer is discretized symmetrically by an odd number of equal length finite elements. In
real setting for analysis, half of the bar is considered and as a result, the first (central)

element has half the dimension of other elemets.
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FIGURE 1II.4.4 Displacement, velocity, stress, and tempera-
ture time evolution at £ = 2 for six different values of § =
0.0298, 0.0594, 0.1463, 0.2857, 0.5455,0.8571. Finite Element solution
for comparison with Figure 11.4.2. 'Parameter p; = 1.0 x 10~% and
p2 = 1.5 are fixed.

2

The initial consitions (I1.3.2) and (IL.3.3) is imposed at t = 0, with initial constant

velocity v,. A stress of » = 1.5 is imposed at the end of the layer. We adopt the average
acceleration Newmark approximation of the governing equations in time with consistent
mass matrix and constant time step At = t;_/80 for all simulations. This is to be done
to validate the results in the previous section. One difference between the present finite
element analysis and the approximated analysis in the previous section is that in the elastic
domain the finite element analysis is still approximate solution to the problem. Figure
I1.4.3 and Figure 11.4.4 depict the results obtained with different number of elements. All
other material quantities are fixed as p; = 1.0 x 10~4.

The trend of solutions with different values of § are the same as analytically approx-
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Breaking Time: verification
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FIGURE I1.4.5 Comparison plot of the breaking time between ana-
lytic solutions of approximate theory and finite element solutions. They
are expected to match and the result is in good agreement with expec-
tations.

imated solutions in Figure 11.4.2. The solutions with highly dicretized models are quite
exactly in agreement with exact analytic solutions (Figure I1.4.1, 11.4.2). Figure I1.4.4(d)
shows decreasing peak as § increases, which is also in good agreement with the analytic
solution 11.4.2(d). This is the main effect of spatial discretization of temperature field in
the finite element solutions.

As another way of verification, t. and ¢, from both analytical approximation and
finite element analysis are investigated with the same condition. Material parameter p; =
1.0 x 10~ and s of 0.0298, 0.0594, 0.1463, 0.2857, 0.5455 and 0.8571 are selected. These
ds correspond to 201, 101, 41, 21, 11‘, and 7 elements in finite elemet model. Figure 11.4.5
depicts this result. The values of ¢.s and ts are in good agreement with each other.
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I1.5. Extensions to ‘General Multi Dimensional Problems

We consider briefly in this section the analysis of strong discontinuities in the general
multi dimensional setting. To this purpose, we describe first the continuum thermoplastic
model in Section II.5.1 that we consider as the basis of our developments. Section IL.5.2
summarizes the results characterizing the strong discontinuities in this general context,
with Section I1.5.3 describing their finite element implementation. Finally, Section II.5.4
includes some representative numerical simulations.

I1.5.1. The continuum model

Consistent with our developments in the previous sections, we consider a continuum
thermoplastic model based in the infinitesimal range on the additive elastoplastic decom-
positions

e=€e°+eP, and n=n°+9P, (IL5.1)

for the infinitesimal strain € and the entropy per unit volume 7. The elastic (recoverable)
response of the material is assumed given by an elastic potential (€ 9, ), the free
energy function, in terms of the elastic part of the strain €°, the temperature 9, and
internal variables o characterizing the hardening/softening of the material. For simplicity,
we consider a scalar variable o for isotropic hardening in the following developments.

A classical argument, usually known as Coleman’s method(see TRUESDELL & NOLL
[1965]), leads to the constitutive relations

o= aee'(ﬁ ’ 776 = _8191/) y 4§=- a'l,b s (1152)

for the stress tensor o and the stress-like internal variable g. The internal dissipation reads
then
D) ,=DF .. +Df (IL.5.3)

therm

for the mechanical plastic dissipation

DP

mech

=0:6P +qa, (I1.5.4)

and the thermal dissipation
, -

therm = 19 ,r"P * (1155)
As considered in previous sections, the mechanical dissipation (IL.5.4) is typically expressed
in terms of the Taylor coefficient x as DP = xo:€P. The relation (11.5.3) of the internal

dissipation leads to the following associated plastic evolution equations

EP =2 05
d=X0,0, (IL5.6)
f’p =A 819¢ )




Final Report, N00014-96-1-0818 95

in terms of a yield surface ¢(o, g, ). The notation of A for the plastic multiplier in these
equations should not be confused with the symbol for the complex wave number employed
in the spectral analyses presented in previous sections. The loading/unloading conditions
are defined as usual by the Kuhn-Tucker complementary conditions with

A>20, ¢<0, A¢=0, (IL.5.7)
and the plastic consistency condition
Ad=0. (I1.5.8)

We refer to SIMO & MIEHE [1992] and ARMERO & SiMo [1993] for complete details
of all these developments. In particular, the relation (I1.5.6)3 identifies the role of the
plastic entropy as the field associated to the thermal softening of the material. We refer
to LUBLINER [1990] for a discussion of this issue.

Finally, the governing equations read in this three-dimensional setting

Ozdiva+fezt1
cd=—divg—H¢+DP

mech

(IL5.9)

for the thermal flow g and the structural thermoelastic heating H¢. The numerical simu-
lations presented in Section II.5.4 consider the case of an isotropic material characterized
by Fourier’s law

qg=—kV9, 7 (I1.5.10) .
for the thermal conductivity «, and
H® = ay tr(€°), (I1.5.11)

for the linear coefficient of thermal expansion as. We also consider the quasi-static as-
sumption considered in (I1.5.9); in the numerical simulations presented in Section II.5.4.

I1.5.2. Strong discontinuities in thermoplastic media

The plastic evolution equations (I1.5.6) reveal the nature of the localized plastic lows
in a thermoplastic material. More specifically, the consideration of a plastic multiplier

A=Adr, (I1.5.12)

for the Dirac delta function dr along a surface I" imply the singularity of the plastic strains
€?, strain-like hardening/softening variables a and the plastic entropy 7?. This singular
character of these fields (singular in the distributional sense) requires the decompositions

u,=%+[u] Hr and n,=7+16r, (I1.5.13)
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Q,

X

N>

Q

FIGURE 11.5.1 The characterization of the localized dissipative
mechanism associated to a strong discontinuity I'is understood in a
local neighborhood 2.

that is, the discontinuity of the displacement field and the singularity of the entropy field.
The notation (-), has been employed to refer to the local character of the the corresponding
fields in a local neighbor of the material point under consideration, with the regular part
denoted by (-). We refer to ARMERO [1997a] for complete details of the developments of
these ideas in a multi-scale context. Figure II.5.1 illustrates the local character of these
considerations in the aforementioned local neighborhood. The local strains associated to
the displacement field (I1.5.13); are

e, =€(a) + (Ju] @ n)® 6r, (I1.5.14)

for the unit normal n to the discontinuity surface I

The inclusion of the expressions (II1.5.12) to (II.5.14) in the constitutive relations
presented in the previous sections identifies necessary conditions for the existence of the
assumed strong discontinuities exhibiting the localized plastic flow (I1.5.12). The analysis
follows the same steps as presented in Appendix III of this report for the case of poroplastic-
ity. The details are therefore omitted. The results characterizing the strong discontinuities
can be summarized as follows:

1. The temperature ¥ remains continuous with a discontinuous thermal flow
a.=qd+[q) Hr = divg=divg+[q]-nér, (I1.5.15)

in the distributional sense, as it appears in the balance equation (I1.5.9),.

2. The energy balance equation (II.5.9) leads then to the local balance equation

PP, =t [4]—p=—[g] - n, witht=on onT, (IL5.16)

mech
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the traction vector £ on I" and the localized free-energy function 1,5 associated
to the localized response along the strong discontinuity I'. For the elastoplastic
case of interest herein, @[3 corresponds to the potential associate to the softening
response on I', but rigid otherwise (i.e., no recoverable part of [u] is considered).
The equation (I1.5.16) identifies the discontinuous part of the thermal flow with
the localized mechanical dissipation along I' (power per unit area and not unit
volume). Following the developments in the continuum, we express the localized
dissipation (I1.5.16) as

DP=xt-[4], (I1.5.17)
for a “localized Taylor coefficient” X.

3. The normal n and the localized flow direction m (i.e., [i] = { m with |jm]| = 1)
satisfy the acoustic tensor relation

Qisom =[n-CT,

njm =0 (I1.5.18)
for the isothermal continuum perfect tangent C{%,. In the case of Jy-flow theory,
this relation leads to the orthogonality of the two vectors n and m, thus defining

an slip relation along I'.

4. The localized softening relation
. 1 , .
=== [Ba¢ L& + By 19] and 7= B¢ . (IL.5.19)
for )

(aqd’) Cgp
Oo®:C? dgdp **°
at the bifurcation leading to the strong discontinuity. In general, we identify
a localized softening relation t([u],?) for the traction vector in terms of the

displacement jump and temperature.

—
—
i

Ogd:(m®n) (I1.5.20)

These results identify clearly the fundamental role of the strong discontinuity intro-
ducing a localized dissipation (dissipation per unit area) on I" and leading to the localized
heating of the material. The need for the introduction of these effects in the numerical
solution of the governing equations is then clear as developed next in the context of the
finite element method.

I1.5.3. The finite element implementation

Following the developments presented in Appendix I of this report, we consider an
enhanced interpolation of the strains in the context of the finite element method to ac-
commodate their singular character. In particular, we consider the strains

_ 1 ]
"= Bd - (et @) + (o)’ o, (115.21)
v ~ e V ’
con forming enhanced (unresolved)
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FIGURE I1.5.2 Discontinuous shape function leading to the singular
strain at an element where localization has been detected

starting with a conforming interpolation of the strain field defined by the linear strain oper-
ator B. This includes any assumed strain interpolation in the context of mixed treatment
of the governing equations. Here £” are the enhanced parameters modeling the jump across
the strong discontinuity I' for an element where localization has been detected through
the relation (I1.5.18). A piece-wise constant approximation of the jump at the element
level is assumed. The strain interpolations (I1.5.21) can be motivated as the (symmetric)
gradient of the discontinuous shape function depicted in Figure I1.5.2.

To capture the discontinuous thermal flow, we also consider a local enhancement of
the thermal flux vector that arises from a standard thermal element characterized by a
gradient operator By . In this way, we consider
§" = —k Bgd in 2.\I'. and |[qh]] ‘n = qfl‘e onl,,
N~

conforming

for the regular part g" and the localized normal thermal flow q".. Here, ¥ denotes a set
of nodal temperatures defining the conforming interpolation of the temperature field.

Remark II.5.1 The acoustic tensor condition (II.5.18) identifies the orthogonality of
the unit normal n and the direction of the displacement jump [u] for J>-flow theory. The
check for the singularity of the acoustic tensor can in fact be expressed in closed form; see
ARMERO & GARIKIPATI [1995]. In this case, a fixed slip direction & = ¢ m, for the
tangent m to I, is considered, thus reducing the number of enhanced parameters in the
strain field to one scalar. 0O

The introduction of the previous considerations in the weak form of the governing
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TABLE I1.5.1 Finite element implementation of enhanced strain finite
elements incorporating strong discontinuities in the thermomechanical
range

—— do n = 1,nsteps
—— do while (conver i (k) . do (k) =
gence in 2,/ :=/d 0],/,, k = 0,1,...)

——do e = 1,nelem

( (k+1) o(K) , oot B
Update enhanced parameters: €epyy = EensatKens(Te - KepyAze)

. . R R
Standard fz'l_ute element : R,- e mech } , K- Z e
with € = Bd + &¢,) R, ther Ze

Enhanced strain module:

( 1 k+1) = (k+ N
Enhanced residual: Te =1Te J;)an e -t (Egn-&-i{ 9e£1+11))
€
R or or
. K..,.= tE s K...= t  K...= €
and tangent: e12 o€, e21~ Zo e23 o€,

Localized dissipation: R, per € R, ther - ﬁeT DP

mech e

~ k
where DY ne=t: (fgnﬁ)' €en )/AL,

N,= LNedF (in closed form) and 8= N0
€

\_ J
Static condensation:
Re <_ Re - Ke12 Ké;:z"'e
Ke «— Ke - Ke12 Ke.;zKezl
\_ J

L—end do le

Assemble (R = eRe, K = eKe) and solve (KAz= R).
Update ( zfz’f,:l) = z,(,’:_)ﬁAz) and check convergence on R.

——end do !convergence

Propagate discontinuities through the mesh graph, if necessary.
——end do In
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equations lead to the finite element residuals

R,...(d,9) := fe=t — d / BTo(e(d, 9;€h)) dn =0,

Nel

R....(d,9) := s*" — A {/ [ (c19+'He Dﬁech) +RBng919] dn ¢ | (11.5.22)

- | NID®_, dl"} =0,
I /

where we have enforced —q,':e = ﬁﬁmh =xt- {g on I',. The local enhanced parameters
are obtained as £"(d,¥) by imposing the local equilibrium relation

1
-Qe,loc

/ o(e(d,9;€M))n d2 — tr(¢h,3.) =0, (11.5.23)

e,loc

7e(d, 9;€) = 7

We refer to ARMERO [1997a] for details.

Table IL.5.1 includes complete details of the numerical implementation of the preceding
equations. It involves the static condensation of the local enhanced parameters £” leading
to the solution of a global system of equations in terms of the nodal displacements and
temperatures z := {d, ¥} (the large-scale problem). The simplicity of the implementation
is to be noted, reducing simply to the construction of the local residual (I1.5.23) and its
static condensation after the standard calculations in a general continuum finite element.
The numerical simulations of Section II.5.4 consider quadratic triangles with discontinuous
linear pressures (Q2/P1). In particular, no regularization of the Dirac-delta functions is
required, without the need for special quadrature rules either. A piece-wise constant
approximation of the displacement jump contributions is assumed in these considerations.
We also note the simplicity of the inclusion of the term with the localized dissipation
DP on I, with the value N, in Table I1.5.1 calculated in closed form. On converging the
nonlinear problem the discontinuities are propagated through the mesh using a mesh graph
and based on the criterion given by (I1.5.18) identifying the unit normal n. We refer to
ARMERO & GARIKIPATI [1996] for further details on this aspect.

I1.5.4. Representative numerical simulations

We present in this section several representative numerical simulations to illustrate
the performance of the proposed formulation. We consider the two examples depicted in
Figure I1.5.3 under plane strain conditions. A continuum J,-flow theory thermoplastic
model based on-the Mises yield condition

(o, a,9) = || dev(o)| - \/gy(a, 9) <0, (IL.5.24)
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L imperfection

Example #1

rigid block R 1 u

smooth, insulated boundary

Auepunoq paqensul ‘yoows

smooth, insulated boundary

Example #2

FIGURE IIL.5.3 Problem definitions: 1) plane strain tension test;
2) rigid block pushed against a thermoplastic domain. Plane strain
conditions are assumed in both cases, with imposed displacements and
measured reactions as shown. Unstructured meshes are used in all
cases, without the mesh knowing a-priori any information about the
strong discontinuity. An imperfection in the form of a reduced yield
limit is assumed in Example #1 to break the symmetry due to the
constant state of stress prior to localization.
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TABLE I1.5.2 Assumed material properties. J-flow theory with per-
fect plasticity is assumed for the continuum with linear thermal soft-
ening. The localized softening law giving the resolved shear on the
discontinuity in terms of the slip is assumed linear, with linear thermal

softening,.

Young modulus E 200.0
Poisson ratio v 0.3

Flow stress Oy, 045
Thermal softening (linear) W 3.0-1073
Localized softening modulus (linear) Hi -10.0
Localized thermal softening (linear) wr 3.0-1073
Thermal conductivity k 45.0 -1073
Thermal capacity PCy 3.68 -10—3
Linear coefficient of thermal expansion ay 1.0 .10~
Taylor coefficient X 1.0
Localized Taylor coefficient X 1.0

is considered. We assume perfect plasticity and linear thermal softening for the continuum
yield properties of the material, that is,

y(o,9) = oy, (1—w, ¥), (I1.5.25)

for the two material parameters o, and w,. The acoustic tensor condition (I1.5.18) leads
then to a slipping relation along the discontinuity between the resolved shear rs:=t-m=
on-m (with n L m) and the tangential slip ¢ (with [u] = ¢m). The linear softening
relation

re = "—1’5(1 — @y, 9) + Hil, (I1.5.26)

is assumed. The stresses are given by a linear elastic response, defined by the Young
modulus E and Poisson ratio v. Table I1.5.2 summarizes the values assumed for the
different material parameters in the numerical simulations presented next.

I1.5.4.1. Plane strain tension test

We consider first the classical benchmark problem of the plane strain tension test. To
this purpose, we consider the specimen of dimensions 3 x 8 depicted in Figure I1.5.3. An
equal tensile displacement is imposed at one end under quasi-static plane strain conditions,
with the specimen free to contract laterally, leading to a state of constant strain and
stress. A unit rate of imposed displacement is considered. To break the symmetry, a
small imperfection is assumed by reducing the yield value 0y,- Under these conditions,
the strains are expected to localize at 45° degrees with the axis of the load. Note that
the mesh or the finite elements do not have any a-priori knowledge of this, with the
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Discontinuity path:

Temperature distribution:

TEMPERATURE

Load displacement curves:

1.6

14

1.2

0.4

-&—~ Q2/P1 + enhanced, Unstructured Mesh
0.2 ~#- Q2/P1 + enhanced, Fine Structured Mesh H
~5- Q2/P1 + enhanced, Coarse Structured Mesh
—+— Q2/P1 (isoparametric), Fine Structured Mesh

% . —»— Q2/P1 (isoparametric), Coarse Structured Mesh
I} 1 1 T 1 I 1 )
002 004 006 008 01 012 014 016 018 02
Tip displacement

FIGURE I1.5.4 Plane strain tension test. 1) Discontinuity path in
a unstructured and a structured mesh. The same path is obtained in
both cases, with a good resolution of the localized deformation pat-
tern of the specimen.. 2) Temperature distribution capturing the dis-
sipative effects along the discontinuity. 3) Load/displacement curves
obtained for different meshes. In all cases (fine and coarse, structured
and unstructured meshes), the proposed localized formulations based
on strong discontinuities results in essentially the same solution, reflect-
ing the resolution of the localized dissipative mechanism. This situation
is to be contrasted with the numerical solutions obtained with a stan-
dard isoparametric solution based on a continuum model with strain
softening,.
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discontinuity propagating automatically after checking the localization condition (II.5.18);
see also ARMERO & GARIKIPATI [1996] for details.

Several spatial discretizations are considered, involving all quadratic triangles with
a mixed linear discontinuous interpolation of the pressure to avoid volumetric locking.
Figure 11.5.4.1 depicts the solution obtained with this element enhanced with the strong
discontinuity fields discussed in the previous sections. The path of the discontinuity is
depicted. The finite elements with active enhanced modes are shown in color, for two
discretizations, structured and unstructured, respectively. The same path can be observed
in both cases, concluding the good properties of the proposed formulations in terms of
the independence on the mesh alignment. We emphasize again that the finite elements do
not have any a-priori information of the directionality of the strong discontinuity. Figure
I1.5.4.2 depicts the distribution of the temperature in the specimen, showing clearly the
heating resulting from the localized slipping along the discontinuity. This heat, and other
heating produced in the volume of the specimen due to the bulk plasticity, is dissipated
through the heat conduction process.

Figure I1.5.4.3 includes the load displacement curves obtained with several spatial
discretizations, including coarser meshes that the ones considered above (half the number
of elements). We observe the overlapping solutions measured by all the meshes when the
proposed enhanced strain formulation is considered. For comparison, we also report the
results obtained with the same discretizations but with a continuum model with strain
softening. The pathological mesh-size dependence of these numerical solutions is evident
in contrast with the procedure developed herein.

I1.5.4.2. Rigid block pushed against a thermoplastic foundation

We consider next the Example #2 in Figure I1.5.3 consisting of a rigid block being
pushed against a thermoplastic foundation. The rigid block has dimensions of 0.4 x 0.8 with
the thermoplastic domain of 2 x 2.4. The block is pushed with an imposed displacement at
the right top corner, with the corresponding reactions measured. Plane strain conditions
are assumed again, with the boundary conditions depicted in Figure I1.5.3. The material
parameters considered in the simulation are summarized in Table I1.5.2. The rigid block
is modeled by considering a Young modulus of 200 - 103, with a purely elastic law.

We consider again spatial discretizations involving quadratic triangles with discontin-
uous linear pressures. No imperfections are required in this case, with the strong disconti-
nuity activated automatically when the condition (I1.5.18) is detected. As expected, this
occurs at the right corner of the block in contact with the substrate. The path of propa-
gation afterwards is depicted in Figure IL.5.5. This path is obtained automatically by the
condition' (II.5.18). We note that in this case this condition can be evaluated in closed
form; see ARMERO & GARIKIPATI [1995]. The curvature of the path is to be noted in this
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FIGURE II.5.5 Rigid block pushed on an elastoplastic foundation.
Automatic propagation of the discontinuity for different imposed dis-

placements.
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FIGURE I1.5.6 Rigid block pushed on an elastoplastic foundation.
Temperature distribution at different imposed displacements (plotting
range (5, 30]). Plots shown over the original undeformed mesh.
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FIGURE II.5.7 Rigid block pushed on an elastoplastic foundation.
Temperature distribution for two different spatial discretizations. Plots
over deformed configuration at % = 10 (temperature range [35, 55)).
Note the similar paths of the discontinuity for different meshes.
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FIGURE I1.5.8 Rigid block pushed on an elastoplastic foundation.
Load/displacement curves for several discretizations. Note that the
coarse meshes lead to a stiffer solution, as expected, leading to a smaller
temperature rise. Observe, however, that the descending slope post-
peak is the same, corresponding to an objective resolution of the lo-
calized dissipative mechanism (i.e. not showing pathological mesh-size
dependence).

case. Figure I1.5.6 depicts the distribution of the temperature. The heating associated to
the localized slip relation along the strong discontinuity is apparent.

Figure I1.5.7 compares this solution with the solution obtained with a coarser mesh.
We can observe again the good resolution of the path of the discontinuity confirming the
good mesh-alignment independence of the proposed methodology. When comparing the
temperature distributions (both depicted at the same scale), we can observe less heating in
the coarser mesh. This situation is to be traced back to the stiffer response of the coarser
discretization, as expected. This is confirmed in Figure I1.5.8 where the measured load
displacement curves have been included. The solutions with two additional structured
meshes (not shown) have also been included. The post-peak response follows the same
slope, indicating the same resolution of the localized dissipative mechanism. The stiffer
response of the coarser mesh is confirmed. These differences are to be expected and are
directly related to the accuracy of the different level of discretization, with a convergence
to a solution as the mesh is refined. This situation is to be contrasted with the pathological
mesh-size dependence of the solutions based on a continuum model with strain softening.
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I1.6. Concluding Remarks

The main purpose of this appendix is the characterization of the behavior of thermo-
elastoplastic material. The concept of a local dissipative mechanism through the introduc-
tion of a strong discontinuity is used to model a strain-softening material. The released
energy on the discontinuity surface is converted into localized heat flux on that surface.
Based on small-strain theory, the deformation process is governed by the coupled system
of linear momentum balance and heat equation. This framework was applied to one-
dimensional softening shear layer under a pulse type dynamic load. Proper parameters
were found and investigated by numerical simulations.

The investigation was done in two steps. The method of linearized spectral analysis
was used to predict the real behavior of nonlinear problem. It revealed that in general
condition with positive thermal conductivity, the ill-posedness can be characterized in
terms of the sign of the mechanical hardening/softening modulus, and its relation with
the thermal softening. The ill-posedness of a problem is shown to be directly related to
the mesh-dependence of finite element analysis. For these ill-posed problems, an objective
dissipation mechanism is required to get physically reasonable solutions.

The ill-posed problems in the continuum framework were next studied analytically
after considering the aforementioned localized dissipative mechanism of a strong discon-
tinuity, thus removing the ill-posedness of the problem. In this context, the analytic
solution of thermo-mechanical problem was obtained rigorously. The linear momentum
balance constitutes a wave equation and the energy balance leads to a heat equation. The
solution for the uncoupled case was obtained analytically and used to predict the behav-
jor of the fully coupled case. The conclusions of these analyses were verified extensively
through numerical simulations of the coupled nonlinear problems.

An analytic solution of the approximated model of a regularized strong discontinuity
was calculated with discretization parameter §. Based on these results, a finite element
analysis was done and verified. These comparisons show the objectivity and consistency of
strong discontinuity formulations. The effects of the spatial discretization in the modeling
of localized dissipative mechanism have been completely characterized by the proposed
analysis. '

Extensions to the general multi dimensional problem have been presented in the con-
text of the infinitesimal theory. After characterizing the strong discontinuities in a fully
coupled thermoplastic model, we have presented their finite element implementation. The
numerical results show the objectivity of the proposed framework in contrast to standard
isoparametric finite element solutions based on a continuum softening model. The inde-
pendence on the mesh alignment has been also noted.
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II1.1. Introduction

The study of localized failures of solids is of the main interest given its important
practical applications. In the case of porous materials, like typical geomaterials, the cou-
pling of the flow of a fluid through the porous space is known to have significant effects in
this type of failures. In this way, the localization of the strains in narrow bands, referred
to as shear bands given their nature, results also in the concentration of the fluid flow
along them, leading altogether to the final collapse of the solid. Theoretical and numerical
analyses of these phenomena abound in the literature; representative examples are given
by RUDNICKI & RICE [1975], RICE [1975], LORET & PREVOST [1991], PIETRUSZCZAK
[1995], SCHREFLER et al [1995], VARDOULAKIS [1996], and RUNESSON et al [1996], among
many others.

The phenomenon of strain localization is common to many other materials including,
for example, metals. In all the cases, the final stages of the deformation before failure are
characterized by the localization of the dissipative effects along these band-type structures.
Different approaches can be found in the literature to model and simulate numerically this
phenomenon; a complete review falls outside the scope of this work. Of interest to the
developments presented in this paper is the so-called strong discontinuity approach. This
approach can be found developed for the purely mechanical problem in SIMO et al [1993],
ARMERO & GARIKIPATI [1996] and OLIVER [1996], with the consideration of regular-
ized strong-discontinuities in LARSSON & RUNESSON [1996] and STEINMANN et al [1997],
among others. The resulting formulations consider the limit case of solutions involving
a discontinuous displacement field, as they are necessarily obtained in (uncoupled) rate-
independent plasticity models of the local continuum. The key feature, however, is the
addition of a localized dissipative mechanism along these discontinuities, a feature not
present in the original local continuum model. The resulting problem of evolution avoids
the ill-posedness of the classical continuum problem (that is, it leads to unique solutions
depending continuously on the data), as it has been shown in the closed-form analytical
solutions presented in ARMERO [1997b] for the problem of wave propagation in a localized
softening bar. Similarly, these ideas have been shown in ARMERO [1997a] to furnish a
very general tool for the efficient modeling in the large scale of the localized effects of
regularized models exhibiting a finite length scale (rate-dependent models, to be specific),
while treating these small scales as unresolvable.

We present in this paper the extension of these ideas to the coupled case of a saturated
poro-plastic solid. The goals are two-fold. The first objective is the characterization of
strong discontinuities in this type of models. In particular, we consider poro-elastoplastic
models in the infinitesimal range characterized by an additive decomposition of the strains
and the fluid content (fluid mass per unit volume), that is, in the framework first proposed
in the pioneering work of BIOT [1941] in the visco-elastic range. Complete details of these
models can be found in the recent account in Coussy [1995], including also several analyses
of the resulting boundary value problems. In this context, discontinuous solutions in the
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displacements, with the corresponding strains being a singular distribution, are shown to
be consistent with the consideration of a localized fluid content (that is, with a fluid mass
distributed per unit area of a dilatant surface), as a consequence of a discontinuity of
the fluid flow in a permeable porous solid. Importantly, the pore pressure field remains
continuous (or, more precisely, with regular gradients). This situation is to be contrasted
with the analyses presented in RUNESSON et al [1996] and LARSSON et al [1996] for the limit
undrained case, where a discontinuity of the pressure field was considered. For the case
of a finite permeability in Darcy’s law, this assumption would require to evaluate second
derivatives of a discontinuous field. This mathematical structure of the equations for a
positive permeability, as well as experimental evidence (see e.g. VARDOULAKIS [1996]),
seems then to indicate as more appropriate the continuity assumption on the pressure
field. We develop then in this context an analysis of the considered strong-discontinuities
in the displacement field for classical continuum models with strain softening (following
closely the work that we presented in SIMO et al [1993]), as a motivation for the form of the

localized stress-displacement-fluid content relations characterizing the localized dissipative
mechanisms in these solutions.

An understanding of these analyses is gained by the consideration of a saturated shear
layer of a dilatant porous solid; see e.g. RICE [1975] for a linearized stability analysis of
this case. We derive complete localized laws for this model problem based on the Mohr-
Coulomb associated plastic potential. In particular, the dilatancy associated with the
discontinuity for this model is identified as the origin of the localized fluid content. In the
context considered herein, and in agreement with RUDNICKI & RICE [1975] and this last
reference, among others, the inception of localization is observed to be determined by the
drained response of the material. The case of a strain softening drained response leads to
a lack of a length scale associated with the strain localization in the shear component of
the deformation, as indicated in RICE [1975] or, in a more general context, in ZHANG &
AL [1998].

All these relations lead directly to the formulation of enhanced strain finite element
methods for the solution of this particular model problem, the second goal of this paper.
The methodology proposed in ARMERO & GARIKIPATI [1995,96], without introducing a
regularization of the singular strain field, is considered. We present complete details for
the geometrically one-dimensional problem of the dilatant shear layer; extensions to more
general situations are currently under further investigation. The proposed enhanced finite
elements involve a constant approximation at the element level of the displacement jumps
appearing in the expressions of the singular strains and of the localized fluid content.
The new methods lead to a correct resolution of the energy dissipation associated to the
localized solutions, thus avoiding the pathological mesh-dependence observed in standard
isoparametric formulations of continuum softening models in this shear driven problem.

An outline of the rest of the paper is as follows. Section ITL.2 includes a complete
characterization of strong discontinuities in porous media. More specifically, the large-
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scale problem defining the equilibrium of the solid is summarized in Section I11.2.1, with
the introduction of the strong discontinuities in the small scale done in Section IIL2.2.
The consequences of these considerations in the flow of a fluid through the porous solid
are studied in Section II1.2.3. Section IT1.3.2 derives the localized stress-displacement-
fluid content laws motivated by a general continuum model presented in Section III1.3.1.
The applications of these developments to the model problem of the dilatant shear layer
is undertaken in Section III.4, including the development of the enhanced finite element
formulation for this case in Section II1.4.2. After the discussion of several numerical sim-
ulations in Section II1.5, we present in Section III.6 several concluding remarks as well as
a discussion of additional aspects of the problem currently under investigation.

IT1.2. A Characterization of Discontinuous Solutions in Porous
Media

We describe in this section the general equations of the coupled problem of evolution
for the saturated porous solid of interest in this work. The presentation follows the ideas
originally proposed in ARMERO [1997a] for the uncoupled mechanical problem, character-
izing the localized effects in the deformation processes of solids through the consideration
of strong discontinuities locally in the small scales. In this context, Section III.2.1 de-
scribes the mechanical governing equations of the classical local continuum problem, the
large-scale problem as referred to in this work, involving regular displacement fields. The
kinematics of strong discontinuities is described next in Section II1.2.2. The addition of
the fluid flow fields in this context is developed in Section III.2.3.

ITI.2.1. The large-scale mechanical problem

We consider a porous solid, composed of a solid skeleton and (non-occluded) porous
space, occupying the reference placement 2 C R™i™ (ng = 1,2 or 3) identified with
its current placement under the usual assumption of infinitesimal strains. In this context,
the deformation of the solid in the large scale can be characterized by the displacement
u : 2 x[0,T] — R™™ of the solid’s skeleton for a typical time interval T. Essential
boundary conditions u = @ are imposed on 8,2 C 812, the boundary of the domain
§2; see Figure II1.2.1. The space of admissible displacement variations, satisfying the
homogeneous counterpart of these essential boundary conditions,

Vu={n:2—-R™m : =0 on 9,02}, (I11.2.1)

is considered as usual.

The large-scale property attached to the displacement field % and corresponding vari-
ations in V, refers to the fact that standard regularity conditions are assumed for these
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fields. By standard, we refer to functions having integrable absolute first derivatives at the
least (that is, the first derivatives being regular distributions as opposed to singular dis-
tributions, in the usual sense; see e.g. STAKGOLD [1979]). Additional localized effects, in
the form of discontinuous displacement fields with strains being singular distributions, are
considered separately in Section II1.2.2 below. In this context, the infinitesimal large-scale
strain field is given by the standard relation

e=Viu=3; [Vu+(Vu)T], (I11.2.2)

for the symmetric part of the gradient operator V(-), with (-)T denoting the transpose of
a tensor.

Denoting the (total) stress field in the solid by o € R™dimXndim (symmetric), the
quasi-static equilibrium of the solid can then be expressed by the classical relation

/U:Vsnd.Q:/f-nd.Q-i-/ t-ndA, VneV,, (I11.2.3)
2 2 0.2

for the volume df2 and area dA elements (i.e., the Lebesgue measures in 2 C R™im
and 82 C R™im—1 respectively), volumetric body force f, and imposed tractions £ on
0,82 C 812. The assumptions

8u2N8N =0 and 5,008,0=060, (I11.2.4)

are considered as usual. The equation (II1.2.3) corresponds to the classical form of the
principle of virtual work and leads, after a standard argument, to the local equilibrium
equations. In particular, we also have the continuity relation across any material surface
I' with unit normal n

[eln=0, (I11.2.5)

for the jump in the stress [o] across I'. The classical notion of the traction vector on I
tr :=on - (II1.2.6)

is then recovered.

I11.2.2. The kinematics of strong discontinuities

The large-scale problem defined in the previous section accounts for solutions involving
standard regularity conditions of the different fields, as indicated above. However, it is of
the main interest to characterize more general solutions and, in particular, discontinuities
in the displacement field, the so-called strong discontinuities, leading to strains being
singular distributions. The purpose of this generalization is to model efficiently (both
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Large scale problem - Local neighborhood

FIGURE III.2.1 Kinematics of strong discontinuities. Large-scale
problem defining the equilibrium of the solid, with standard loading and
boundary conditions, and the local neighborhood 2, incorporating the
effects of the strong discontinuities. The flow of fluid in the porous solid
is characterized by the flow vector @, which exhibits a discontinuity
across I.

theoretically and numerically) the localized response of inelastic solids as discussed in
Section IIL.3 below. Following ARMERO [1997a], these localized (non-smooth) effects are
introduced at the local level as follows.

Let {2, C {2 be a local neighborhood of a material point & € §2. The case of interest
corresponds to the appearance of a discontinuity in the displacement field across a certain
orientation n at & € §2,;. Let I'; denote a surface in 2, with such orientation; see Figure
II1.2.1 for an illustration of these ideas. As indicated below, the case of measure(£2,;) — 0
is of the interest herein, thus allowing for this general local definitions. In this context,
we consider a general function ¥, : 2, — R exhibiting a unit jump across the surface
I, that is, [¥r,] =1 on I;. Denoting by Hr, the Heaviside step function across I, the
function ¥, can be expressed as

Yr,=Hr, — Nr, in 2., (I11.2.7)
for a smooth function N, .
With this notation, we consider the small-scale displacement field

u,=u+€V¥r, in 2, , (IT1.2.8)

in terms of the large-scale displacement u and the local field £ : 2, — R™™ defining
the displacement jump [u,] = £ across I';. The infinitesimal strains corresponding to the
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local displacement field u,,, which we refer to as the small-scale strains, are given by

e(up) = e(w)+G(E) + (§®n) dr, , (I11.2.9)
=: €
regular singular

distribution  distribution

for the regular function
G(&):=V°¢ Hr, —€®V°Nr, , (I11.2.10)

and the Dirac delta function ér, across I',. We note the result VH r, = n 0r, for the
unit normal n; see STAKGOLD [1979]. The relation (II1.2.9) identifies the decomposition of
the small-scale strain €(u,) in regular and singular parts, the latter corresponding to the
localized effects along the strong discontinuity I';. Similarly, the decomposition (II1.2.9)
can be understood as defining the unresolved strain €ynres = €(u,)—e(u) by the large-scale
strain e(u).

The considerations above have introduced the new unknown field £, in addition to the
large-scale displacements u. As shown in ARMERO [1997a], a well-posed local continuum
formulation can be constructed by considering the local weak equation for all variations -
of the local jumps &

1

_— . ds
measure(§2;) Jo, v-onalit

1 .
measure(Iy) /F v-tr, dA=0, (I11.2.11)

in the limit h, := measure(§2;)/measure(I’;) — 0, imposing then the equilibrium equa-
tion (II1.2.11). The whole formulation is to be understood in this local limit, thus avoiding
the precise definition of the neighborhood §2;. The resulting large-scale local problem in-
corporates effectively the dissipative effects of the discontinuous solutions, and leads to a
well-posed problem. See ARMERO [1997b] for the closed-form analysis of the wave prop-
agation in a one-dimensional bar considering the resulting dynamic problem, showing the
uniqueness of the solution and its continuous dependence on the data.

I11.2.3. The characterization of the fluid flow

The porous solid is assumed to be fully saturated with a fluid. Following BIoT [1941],
we consider the fluid content M : 2 x [0,7] — R increment (units of fluid mass per
unit volume) over an initial value M, : 2 — R. Given the developments above for the
discontinuous solutions in the displacements u,, and the corresponding singular strains
e(u,), we consider similarly the localized fluid content M increment (units of fluid mass
per unit area) on the set

r=ur,={zen : I.#0}, (111.2.12)
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composed by all the material points exhibiting locally strong discontinuities. We assume
that this set defines a measure space (being, in general, of lower dimension than 2,eg.,a
surface), thus allowing the decomposition

M:=M+M ép, (I11.2.13)

for the total fluid content M. In equation (II1.2.13), we have introduced the notation 8
for the delta function satisfying the integral relation

Total fluid mass . _ / Mdo= / M dn+ / M dA, (ILIL.2.14)
in £2 Q 0 r

for the corresponding measure dA on I" and the usual Lebesgue measure df? in R™dim,
Physically, this relation identifies the fluid mass stored along all the strong discontinuities
of the displacement. As discussed in Section IIL.3 below, the decomposition (II1.2.13) is
consistent with continuum local models of poro-plasticity, with the localized fluid content
M given by the dilatancy associated to the strong discontinuities I".

Assuming that no fluid sources exist, the conservation of fluid mass in any part P C 2
is given by

/ MdR = —/ qw-n dA, (I11.2.15)
P P

defining a vector field g,, that characterizes the local flow of fluid mass due to fluid con-
duction through the porous space of the solid. These ideas are illustrated in Figure II1.2.1.
In (II1.2.15), the time derivative has been denoted by (). A standard argument based on
integration by parts leads to the relations

M=—divg, in@\T, (I11.2.16)
and the localized balance law
M= —[gu]-m on I, (IT1.2.17)

for the unit normal n to I" (the smoothness of I is assumed, for simplicity), identifying
the discontinuity of the fluid flow with the jump term [gw] on I'. We observe that the
relations (I11.2.16) and (II1.2.17) can be written equivalently in distributional form as

M=-divg, (=-div[gulo\r] - [gu] nor) ; (111.2.18)

see e.g. STAKGOLD [1979)].

The classical local relation given by Darcy’s law is assumed in the following develop-
ments for the fluid flow vector g,, in 2\, that is,

qu = —pLk(Vpw — g), (I11.2.19)
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in terms of the the density of the fluid p,,, the permeability tensor of the porous solid k,
gravity g, and the free enthalpy (or chemical potential) p,, of the fluid. We consider the
case of a barotropic fluid characterized by its pore pressure p : 2 x [0,T] — R and the

constitutive relation
Bule) = [ =T (11.2.20)
v pw(n)’ o
in the developments that follow. In this case, Darcy’s law (II1.2.19) takes the classical
form '

qQw = —puk(Vp - py g) , (I11.2.21)

for the fluid mass flow vector q,, in £2\I". The discontinuous part of the fluid flow [q.,]
on I' is given by the localized fluid content M through (II1.2.17) and is obtained by the
localized constitutive relations derived in the following section for a general elastoplastic
porous solid. We note that the locality of all the previous arguments, that is, arising at a
material point & € 2, leads to the pointwise relation (II1.2.17), not accounting explicitly
for flow conduction along the discontinuity surface I".

Finally, the weak form of the governing equations (II1.2.16) and (II1.2.17), as em-
ployed in the finite element methods developed in Section II1.4.2, are obtained multiplying
equation (II1.2.16) by a smooth test function w : £2 — R, and integrating by parts, thus
leading to

/A?wd():/qw-de.Q—/ qw-nwdA+/[[qw]]-nwdA. (I11.2.22)
2 2 a9 r

Assuming that the normal flow of fluid mass g, is known on the part of the boundary
0492 (possibly as a function of the pore pressure p), that is,

Qu "N = Qun on aq.Q cofn, (111223)

with the part of the boundary with an imposed pressure denoted by 0p {2, equation (I111.2.22)
reduces to

/I\Llwd(l—f-/l\.;!wdA:/qw-de.Q— Gun wdA  YweY,, (II1.2.24)
2 r fo) 8,2

after making use of the local relation (II1.2.17). The notation
Vo={w:2—>R : w=0 on 8,2}, (I11.2.25)

for the space of admissible pressure variations has been employed in (II1.2.24). The as-
sumptions (II1.2.4) are similarly imposed for the parts of the boundary Opf2 and 0,12.

Remark III.2.1 We emphasize the important fact that the pressure field p and the chem-
ical potential p,, = fi,,(p), as well as their variations, remain continuous (or, to be more




Final Report, N00014-96-1-0818 121

precise, with integrable absolute value derivatives) in all the previous developments, a situ-
ation to be contrasted with the formulations presented in e.g. LARSSON et al [1996] for the
undrained limit, considering discontinuous pressure fields with the corresponding gradients
being singular distributions. Mathematically, the structure of the local equation (II1.2.18)
with the flow vector given by (II1.2.21), involving then the second spatial derivatives of
the pressure field for a positive permeability, precludes these discontinuities, but not of
the fluid flow vector. In addition, the presence of pressure shocks has not been observed
experimentally; see e.g. VARDOULAKIS [1996]. In the proposed context, the flow jump [q,]
can be related to a discontinuity in the pressure gradient instead. The discussion presented
next identifies the consistency of this approach with a continuum poro-elastoplastic model.

O

IT1.3. Localized Dissipative Mechanisms in Coupled Poro-Elastoplastic

Solids

The governing equations described in the previous section characterize the kinemat-
ics as well as the quasi-static equilibrium and the conservation of fluid mass in a general
porous media exhibiting strong discontinuities. In this context, the kinematic variables,
consisting of the large-scale displacements u and the local displacement jumps €, and the
fluid variables, given by the (continuous) pore pressure p and the fluid content M (with
its regular M and singular parts M ), have been shown to characterize these discontinuous
solutions. Still, the resulting equations need to be supplemented by the appropriate con-
stitutive relations for the stresses and the fluid content. In particular, these relations must
be developed for the localized quantities on I, namely, for the traction vector ¢, and the
localized fluid content M.

The development of these localized constitutive laws is undertaken in this section.
More specifically, we show that a poro-plastic continuum model is consistent with local-
ized relations along the discontinuity. These ideas are developed in Section II1.3.2 after
summarizing in Section II1.3.1 a classical continuum poro-plastic model. The assumed con-
tinuum model considers an additive elastoplastic decomposition of both the strains and
the fluid content fields in the infinitesimal range of interest herein. A complete account of
this type of models, following the thermodynamically consistent approach first proposed
in the pioneering work of BIOT [1941], can be found in Coussy [1995]. An extension to
the finite deformation range in the framework given by a multiplicative decomposition of
the deformation gradient can be found in ARMERO [1998].

IT1.3.1. The continuum poro-elastoplastic model

The governing equations described in the previous section are supplemented by the
constitutive model characterizing the response of the porous solid, that is, defining the
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total stresses o in terms of the independent unknown fields M and the infinitesimal strains
€ = &(uy) in the small scale £2, of the material. A general coupled elastoplastic model
can be characterized in this context by the additive decompositions

e=¢e‘4+e? and M=M+MP, (I11.3.1)

in elastic and plastic parts. The reversible response of the porous solid is then character-
ized by a stored energy function W = W(se, M¢,a), in terms of the elastic parts of the
strains and fluid content increment, and an extra set of internal variables characterizing,
for example, the hardening/softening of the material. The analyses presented in this pa-
per consider, for simplicity, the case of isotropic hardening determined by a single scalar
internal variable . Similarly, isothermal conditions are assumed.

A standard argument based on the imposition of a positive internal dissipation (known
as Coleman’s method; see, e.g., TRUESDELL & NOLL [1965])

Dint =0:€+py M—W >0, (I11.3.2)

where the first term in the right-hand side of this expression accounts for the stress power
and the second term for the change of internal energy due to fluid transport (the dissipation
associated with fluid conduction is defined separately), leads to the constitutive relations

o= aseW s Moy = aMeW and q= —6(,W , (III33)

for total stresses o, the chemical potential of the fluid My and the stress-like hardening
internal variable g. The internal dissipation (II1.3.2) can then be expressed equivalently as

Dint =0 6P +pyy MP+q & >0, (I11.3.4)

as a straightforward calculation shows.

The rate forms of the constitutive relations (II1.3.3) are given by
6 =06"—bpyofiw C, with ' = Cgré® (II1.3.5)

for the effective Biot’s stresses o', and

frw = B/pw = = [* —bpuo é°: ] | (I1L3.6)
Pwo
for the fluid’s chemical potential. Here, we have introduced the notation Csk for the solid’s
skeleton elastic tangent (“drained” tangent), pyo for the fluid’s reference density, Q for
the Biot’s modulus, b for the Biot’s coefficient, and ¢ for the coupling tangent tensor.
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In particular, the linear elastic response is recovered through the quadratic stored energy
function

W(e®, M, a) = 1e°: C,e® + ;C'Z—Me2 - @—ee e M+ H(a), (I11.3.7)
2p%0 Pwo

for a general hardening potential H(a) and the “undrained” material tangent C,, given in
terms of the drained elasticities Cgx by

Cu=Cs +Qbc®c. (1I1.3.8)

The isotropic case is recovered with the choices

1
Cok = ksk1 ® 1 + 24 (]I - §1 ® 1) and c=1, (I11.3.9)

for the drained bulk x,r and shear pg, moduli, and the rank two 1 and rank four I identity
tensors, respectively. The undrained tangent C, possesses then the same form (II1.3.9),,
but with the undrained bulk modulus s, = kg + Qb2.

The evolution of the plastic internal variables e?, MP and « is given by the rate
equations

el =\ oo f
&=A0,f, (111.3.10)
MP=Xd,,f (=Xuwdpf),

for the associate case based on a yield surface f(o, pw(p),q). Equations (II1.3.10) can
be derived from the principle of maximum plastic dissipation, after following a standard
argument based on (II1.3.4). The plastic consistency parameter A has been introduced in
(I11.3.10), and it is determined by the Kuhn-Tucker and consistency conditions

f<0, X>0, AM=0, and Af=0. (I11.3.11)

defining the loading/unloading conditions.

A common example of the above considerations is furnished by a yield condition
f(o,p,9) = far(o’, q) defined in terms of the effective stresses (II1.3.5) (that is, character-
izing the drained response of the porous solid). This choice leads to the relations

8of=00fk, and Opf = b’:‘"’ B fer i €, (111.3.12)

as a simple calculation based on the chain rule shows. In this case, equation (II1.3.10)3
reads
MP = pyobeP:c (= puwo béP, for the isotropic case) (IT1.3.13)
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a direct relation of the evolution of the irreversible part of the ﬁuid content MP with
the plastic dilatancy of the solid’s skeleton, as characterized in the isotropic case by the
volumetric plastic strain

el ==tr[e?] , (I11.3.14)

for the usual trace operator tr[-]. Combining (III.3.6) with (II1.3.13), we obtain the relation

M= ”5" B+ Puo b éy (I11.3.15)
for the volumetric strain &, := tr[e]. Here, we have assumed a constant fluid density

Pw = pwo and the isotropic case of interest in the developments of the sections to follow.

II1.3.2. The localized dissipative mechanism

We show in this section that the developments presented in Section III.2 identify-
ing the regularity of the different fields are consistent with the coupled poro-elastoplastic
model described in Section II1.3.1. The final goal is the identification of a localized stress-
displacement-fluid flow relation along the strong discontinuity. In this context, we consider
a localized dissipative mechanism characterized by a localized plastic flow given by

A=Xdr, . (111.3.16)

The conditions developed below identify then necessary conditions for the appearance of
this assumed mechanism (see ARMERO & GARIKIPATI [1996]). The derivation involves
basically the same arguments as in the developments presented in SIMO et al [1993], and
proceeds as follows.

The traction vector ¢, = on remains continuous by equilibrium, implying that £,
is a regular function. After using (I11.3.5) and the decomposition of the strains (II1.2.9) in
regular and singular parts, the rate of the traction can be written as

= [Cor(E - &) = puobfiwc] n+ [csk ((é ®n)° — A3y f)] n 6r,(111.3.17)

| — 7

—

N
regular singular

noting again the regularity of the fluid chemical potential; see Remark II1.2.1. The reg-
ularity of the traction rate £, implies then that the singular part of (II1.3.17) vanishes,
that is,

Qi€ =ACudsfn where Qu=n-Cu-n, (I111.3.18)

the elastic acoustic tensor of the solid’s skeleton.
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Furthermore, the consistency condition (I11.3.11)3 implies

O=f=080f:6+0,fp+0,f d
=00 f : [Cok(€ — 87) — puobiwe] +8pf P+ 0,f §

regular

+8gf : Cop ((5’ ®n)° — Ao f) or, (I11.3.19)

=
singular

Each of the regular and singular parts of this last expression must vanish, leading to

1

A= ——
Oo f : CsrOo f

80 f : Car (é ® n)s , (I11.3.20)

for the singular part. Combining this last relation with (II1.3.18) we obtain the final
condition for the direction of the jump rate £ = ||£||m (with ||m] = 1)

1

Pm =0 where P=n.|Chp — ————C
Dk L [ *” O] Corlof

o f @ cskaaf] n,

(I11.3.21)
the drained perfectly plastic acoustic tensor.

In addition, the above relations lead to the following localized softening law. Given
the regularity of the different fields involved, the softening law (II1.3.10); needs to be
understood in the distributional sense

H§:=—d=-X8,f ép, = Hl=H'ép, (111.3.22)

for a localized softening modulus . This last equation identifies also the evolution of the
localized equivalent plastic strain

a=2x0,f, (111.3.23)

having units of displacement. The combination of (II1.3.22), the regular part of the con-
sistency condition (II1.3.19) and the equation (II1.3.20) leads to the following localized
relation for the magnitude of the rate of the displacement jump

TR | . . | - ('aqf)2 .
”E” = ,’j{ = \[60’f : 0:" 6pf p], where gk = aa'f : CSkaaszkaa-f : (m ® n) R
aa/f,kid"
(I11.3.24)

with ||| = 0 when the right-hand-side of (II1.3.24); vanishes (that is, a rigid-plastic
response along I;).
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Finally, the origin of the singular character of the fluid content M can be identified
with the plastic (or irreversible) part M? through (I11.3.10)3 given (II1.3.16). In fact, using
(II1.3.10)3 and (III1.2.18) the following expression is obtained

M= —[qu] -7 = puod || m -7, (I11.3.25)
S ——
én

for the singular part of the fluid content M, and from (IT1.3.15)

M= "5" P+ Pwo b &y (I11.3.26)

for the regular fluid content increment. Equation (II1.3.25) clearly indicates the relation of
the localized fluid content M with the dilatancy associated with the strong discontinuity,
that is, the component of the displacement jump normal to the discontinuity.

In summary, the developments in this section show the consistency of a classical
continuum poro-plastic model with localized relations along the strong discontinuities. In
particular, the localized softening law (III.3.24), involving a stress/displacement relation,
has been obtained. Similarly, the evolution of the localized fluid content in the fully
saturated porous media is given by (II1.3.25) through the dilatant response of the strong
discontinuity. We consider in the next section the particular case of a dilatant shear layer
to illustrate the significance of these localized relations.

Remark II1.3.1 The developments presented in this section have considered a general
poro-plastic model, leading to a set of rigid-plastic relations along the discontinuity. As
indicated in Section III.1, we understand the developments presented herein as a motivation
for the form of the final localized relations. The consistency of these localized laws with
the original local continuum model is the main focus. Additional considerations (viscous
effects, elastic unloading with or without damage, for example) can be incorporated in a
more general framework as presented in ARMERO [1997a,b]. O

II1.4. Model Problem: a Dilatant Shear Layer

As a model example of the considerations presented in the previous sections, we ex-
amine in this section the problem of an infinite shear layer. This model problem is defined
as follows. We denote by L the thickness of the layer in the direction z, perpendicular to
the layer, so £2 = [0, L] C R in this case. We denote by n =[1 0]7 the unit vector in the
z-direction and by s = [0 1 ]T the unit vector in the perpendicular direction; see Figure
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r

nodes } | ~ element "e"

FIGURE III.4.1 Dilatant shear layer. Problem definition illustrating
the notation for the normal and shear components of the displacement
and stress, the fluid flow, and the finite element discretization.

II1.4.1 for an illustration of the notation. The layer is subjected to the normal and shear

strains
du, dug

6n_7d? dx ’

for the normal and shear displacements un(z) and u,(z), respectively. In this setting, the
total normal stress o and the shear stress 7 act on the layer at z = L and are constant in
12 by equilibrium (no body forces are assumed). The effective normal stress corresponding
to o is denoted by ¢’ = o + bp. The material is assumed isotropic and characterized by a
scalar permeability k (i.e., k = k 1), so the fluid flow g, is in the z-direction by symmetry.
Gravity effects are neglected, and a constant fluid density p,, = py,, is assumed.

and Vs =

(I11.4.1)

III.4.1. The poro-elastoplastic model

The poro-elasto-plastic model described in Section III.3.1 reduces in this case to the
following equations. First, we consider the linear elastic stress-strain laws

&' =Boe(6n—€2) and  7=G (3 —4P) , (I11.4.2)

for the oedometric modulus E,. and the shear modulus G. The Mohr-Coulomb yield
criterion

fok (7,0',0) = |7] + B’ — g (a) , (IL.4.3)
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is assumed for the elastoplastic response, where 3 = tan ¢ for the drained friction angle
¢, and ¢(0) (= c) is the initial drained cohesion of the material. The continuum plastic
evolution equations (III.3.10) read in this case

E=A0, Af=Asign(r), &=\ and MP=p,,eE. (111.4.4)

The loading/unloading and consistency conditions (II1.3.11) are added to these equations.

The combination of equations (II1.4.2) to (II1.4.4) leads to the following rate form of
the assumed continuum poro-plastic model

o’ 3 1 E(G+H) —B E G sign(7) En
: [TGrEETH

} , (IIL4.5)

~B E Gsign(r) G E+H) | | 4
c
in terms of the continuum hardening/softening modulus H := —dg(a)/da. The so-called

dilatant hardening can be observed in the term involving the H + $2E combination. Still,
the perfectly plastic case H = 0 leads to a singular tangent C with the eigenvector
corresponding to the zero eigenvalue given by

po (S __1 [P (ITL4.6)
- yetg —m sign(r) | o

This strain mode can be written as a the symmetric part of the rank one update (in the
particular notation employed in (III.4.6) for the strain rate vector) as

&9 —sym(men)  for  |m=[ul/|[u]l = ——— [6 n+sign(r) ],

Vit P
(111.4.7)

thus corresponding also to the condition (I11.3.21) based on the acoustic tensor Q. There-
fore, the localization condition (III.3.21) is satisfied upon yielding, with the normal n to
the strong discontinuity surface at z given by the normal to the layer, and the constant
direction m of the displacement jump given by (II1.4.7). The dilatant character of the dis-
continuity jump, as reflected by the normal component of the strain mode £, is apparent

for B #0.

Remark III.4.1 We note that the conclusion that the dilatant shear layer loses its
stability when the underlying drained elastoplastic model reaches the softening range agrees
with the analysis presented in RICE [1975] for this very same model example. In this
reference, a complete linearized stability analysis of the governing equations, including the
conservation of fluid mass through Darcy’s law, is presented. This analysis identifies the
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short-wavelength limit as leading to the observed instability, with no intrinsic length-scale
present in this shear problem. ' O

Following the analysis of Section II1.3.2 characterizing the resulting strong discontinu-
ities, the strain rates are decomposed upon localization in a regular and a singular parts,
namely

€n=En+&ulr, and =%, 4&op (111.4.8)

where

B sign(r)
V1+p? Vi+p?'
are the normal and the shear components of the displacement jump rate, respectively. The

magnitude of the rate of the jump € is given by the localized relation (II1.3.24), which
reads in this case

bn=E€n=¢ and £,=€-s=¢ (111.4.9)

. S H
7 sign(r)+ 06 = —1—+—ﬂ2-§ . (I11.4.10)

A constant softening modulus H (i-e., linear softening), up to reaching a zero yield limit,
is assumed in the simulations of Section II1.5. The localized fluid content in I;, given by
(II1.3.25), reads in this case

(I11.4.11)

in terms of the constant fluid density py,., the Biot’s coefficient b and the dilatancy factor
B. Similarly, the regular part of the fluid content increment, given by equation (I11.3.26),
can be written for the current case of interest

M= pg’ B+ Puwo b Ey (I11.4.12)

for the Biot’s modulus @ and the regular part of the normal strain En.

I11.4.2. An enhanced finite element formulation

The above considerations are implemented in the context of enhanced strain finite ele-

ment methods, following the formulations presented in ARMERO & G ARIKIPATI [1995,96] which

do not resort to the regularization of the singular Dirac delta functions. In this geometri-
cal one-dimensional setting, we consider the isoparametric interpolation of the large-scale
displacement fields u,, and u,

un(z) = Ne(z)d,, and us(z) = N(z)ds, for z € 12, (1I1.4.13)
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for the piece-wise linear shape functions

(I11.4.14)

—(z — z2¢)/ e
Ne(x)zl: ( )/ } ]

(.’17 - xle)/he

for a typical two-node element 2, = [T1e,Z2e] C 2 = [0, L] (with h, = |Z2e — Z1¢|) in
terms of the nodal displacements vectors dn, and d;,, the normal and shear displacements,
respectively. The strain field is approximated through the enhanced strategy

1 1
Enc = Bedne - h_gne +Ene 6[': 9 and ’yse = Bedse - "l—fsc +£85 61": 9 (III-4-15)
e €
~ - ’ N

En

e Tne

in the elements where localization is detected, where
L
B, :=VN, = [-1 1], (IT1.4.16)
€

the standard strain matrix associated with the conforming part of the displacements (the
large-scale strain field in the notation of Section II.2). The scalars &,, and &;, correspond
to a constant approximation over the element of the normal and shear displacement jumps,
respectively, and are given in terms of a single enhanced parameter £, for element 2,
through the relations (II1.4.9).

The enhanced interpolation (II1.4.15) of the strains can be understood as arising from
the displacement interpolation

u,(z) = Ne(z)de + & Ure(z) Z € [Tie, Tae| (I11.4.17)
ford. = [d,, d,, ]" and €, = [€n. &..]7, in terms of the interpolating function
Ure(z) = Hyp (z) — Nao(z) (II1.4.18)

for the shape function N.(z) in (I11.4.14), and the Heaviside function H, r.(z) exhibiting
a unit jump across the discontinuity at the center of the element

Tre = 3 (Toe + T1e) - (I11.4.19)
The function ¥r.(z) is depicted in Figure II1.4.2, and corresponds to an approximation of

the function ¥r(z) in (II1.2.7) as employed in the developments of Section III.2.2 for the
continuum problem. The relation

T2e
/ pe(z) dz =0, (IIL.4.20)
Tile
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over an element {2, is satisfied, in particular. The multi-scale framework developed in
Section IIL.2 clearly applies to the proposed finite element method with simply identifying
the local neighborhood 2, with the element 2. for the material point zr. We note,
however, that the entire formulation only makes use of the enhanced strain as written in
(I11.4.15). As obtained in the previous section for the one-dimensional problem at hand, a
strong discontinuity is activated upon yielding.

The final governing equations for the mechanical problem consist of the principle of
virtual work equation (III.2.3) of the large-scale problem for u, and the localized equilib-
rium relation (II1.2.11). For the problem at hand, the weak form (II1.2.3) reduces to the
set of residual equations

Nelem Toe
— T —
R,l._fnm—A/ BTo dz=0,
e=1 le

T

(111.4.21)

Nelem

T2e
R,:=f,  — A/ BTrdz =0,
e=1 vV%le

for normal and shear external nodal force components Sne.. and fs ., respectively, includ-

ing imposed boundary displacements. The symbol A has been used in (II1.4.21) to denote .

the assembly of all the 7., element contributions. The stresses o and T are obtained
trough the elastic relations (II1.4.2) for the effective stresses, in terms of the regular part
of the strains &, and ¥, respectively, in (II1.4.15), and the pressure contribution discussed
below. The corresponding integrals are evaluated through a single quadrature point at the
center of the element.

The localized equilibrium relation (II1.2.11) reduces in this case, involving a constant
approximation of the displacement jumps over the element, to the nonlinear scalar relation

7|+ 80"~ §(€e) =0, for & >0 } (111.4.22)

&e = constant, otherwise ,

after using the localized softening relation (IT1.4.10), in terms of the stresses {o,7} and the
localized softening stress-displacement law §(¢.) (note that, in this case, & = £, as defined
in (II1.3.23)). The rate form of (I11.4.22) is given by equation (I11.4.10). The normal &,
and shear {;, components of the jump are obtained in terms of e through the constant
relations (II1.4.9). The integration of the localized equations (ITL.4.22) follows the same
steps as described in ARMERO & GARIKIPATI [1995].

The fluid flow contributions are interpolated using a similar piece-wise linear interpo-
lation of the pore pressure field p, that is,

p(z) = Ne(z)pe  for z € 2 = [216,22] , (111.4.23)
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/ Xr = (X1t x2.)/2

0O

1/2 Xle X2e

h,

FIGURE III.4.2 Dilatant shear layer. One-dimensional enhanced
finite element with a discontinuous shape function at the mid-point
ZTre = (Z1e + z2¢) /2.

and the same shape functions N, as in (II1.4.14) for the nodal pore pressure parameters

Pe = [D1e pze]T. The weak form of the fluid mass balance equation (I11.2.24) leads in
this case to

Nioc ,

L L
. 2 d
|t opan+ Y b, dp(ar) = [ oo tm) dz-law o, (mazs)
0 e—1 0 dl'

for all admissible variations §p € V, and for n,. elements exhibiting a strong discontinuity.
Consistent with the one-point quadrature assumed for the mechanical contributions and the
mid-point location of the discontinuity zr. in (I11.4.19), the contribution of the localized
fluid content involves simply dp(zre) = (0pie + Op2e)/2 for the assumed linear pressure
interpolation. Alternative locations of the discontinuity in an element can be considered;
details are omitted.

The presence of the localized flow M, = —[gw]e appears as an added source term to the
fluid mass balance, and it is given by the relation (IIL.4.11) in terms of the displacement
jump rate ée. The associated discontinuity of the fluid flow g, is incorporated at the
element level through an enhancement of the conforming contribution of the gradient of
the assumed linear pressure interpolation. More precisely, we consider at the element level
the enhanced interpolation

qw (Z) = —puok Be pe + l9w.] re (2) T € [T1e, T2e] (ITI1.4.25)
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for the conforming gradient operator B, defined in (I11.4.16). Noting the property (II1.4.20)
for the discontinuous interpolation function ¥re(z) and the constant character of the pore
pressure gradient variations d(dp)/dz, we observe that the fluid flow jump [gw] is effec-
tively eliminated from the balance equation (I11.4.24). The actual value of [gw] is obtained
from the localized relation (II1.4.11) as a post-processing, if desired. Similar to the en-
hancement of the strains discussed above, the discontinuous contribution to the fluid flow
vector in (II1.4.25) can be understood as arising from an enhanced interpolation of the
pressure field, incorporating the continuous function

vl (z) :=/ Ure(n) dn  z € [T1e, T2¢) (I11.4.26)
Tie
exhibiting a discontinuity in the first derivative at .. Note that, given (II1.4.20), we
have the property
Wﬁe(xle) = !I/f-’,e(xge) =0

thus defining an added hierarchic interpolation to the original linear pressure interpolation.
The numerical results reported in Section IIL.5 do not use, however, this alternative more
complex post-processing when reporting the spatial distributions of the pore pressure.

The final discrete system of equations corresponding to the fluid mass conservation
(IIL.4.24) is obtained by considering the constitutive relations (I11.4.12) and (I11.4.11) for
the regular and singular parts, respectively, of the fluid content increment. In particular,
for the one-dimensional finite element interpolations considered in this section, equation
(I11.4.12) can be written as

Mge - pgo p.+pWObE_.n

Pwo . . 1.
Q p pwo he £€

hi M., i 0 (I11.4.27)
after using (II1.4.11) and (II1.4.15);. Given the relation

= Q 15+Pwobén—

T2e
0p(zre) = hl/ dp(z) dz (I11.4.28)

€ JzTie

for the assumed mid-point location (I'II.4‘19) of zr., we observe then that the introduction
of the relation (II1.4.27) in the weak equation (II1.4.24) leads to the cancellation of the

localized fluid content terms corresponding to Me, as a simple calculation shows. The
resulting finite element equation reads

Sp+QTd, + Hp -1y =0, (111.4.29)




F. Armero 134

where we have introduced the notation

Nelem Nelem
Pwo T T
S:=A/ N; N, dz H:=A/ k B, B, dx ,
e=1 e Q ) e=1 V2% Pue )

(I11.4.30)

Nelem

and Q := A/ pwob BTN, dz |
e=1 2.

and the vector of imposed external fluxes 7.4, including the corresponding contributions
of imposed boundary pressures. Physically, equation (II1.4.29) imposes weakly the global
(large-scale) balance of fluid mass as given by the regular contributions of the fluid flow
fields, whereas the localized balance of fluid mass on the strong discontinuity is handled
locally at the element level. For the assumed mid-point location of the discontinuity,
the localized accumulation of fluid content M in the discontinuity is a consequence of
the strain —¢,./h. associated to the normal displacement jump &, over the rest of the
element, as relation (II1.4.27) shows. This localized fluid content can then be obtained as
a post-processing in terms of the enhanced parameter £, through (I111.4.11).

In summary, the proposed finite element formulation involves the assembly and nu-
merical solution of the nonlinear system of discrete equations (I11.4.21) and (I11.4.29). The
numerical simulations presented in Section IIL.5 make use of a Newton-Raphson scheme to
solve this coupled set of nonlinear equations, with the quasi-static equilibrium equations
(I11.4.21) imposed at the end of the time step and the evolution equations (II1.4.29) dis-
cretized in time with a backward-Euler scheme. Equation (I1I1.4.22) is employed for the
solution of the local enhanced parameter &, and eliminated through its static condensation
in the corresponding contributions of the stresses in the mechanical equations (I11.4.21).
We refer to ARMERO & GARIKIPATI [1995,96] for complete details on this procedure; de-
tails are omitted herein. The final formulation involves then a nonlinear discrete problem
in the nodal displacements d. and the nodal pressures p. only, the large-scale problem,
while incorporating effectively the effects of the localized dissipative mechanisms.

III.5; Representative Numerical Simulations

The purpose of this section is to evaluate the performance of the finite element for-
mulation proposed in Section III.4.2. To this purpose, we present the results obtained for
two different problems involving the dilatant shear layer studied in Section II1.4. More
specifically, Section IIL.5.1 considers the undrained shear test, referring to the assumed
impervious boundaries of the shear layer. In contrast, Section III.5.2 considers the drained
shear test characterized by an imposed pore pressure along the boundaries.
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TABLE III1.5.1 Material parameters for the poro-plasticity model con-
sidered in the numerical simulations presented herein.

Oedometric Modulus E,. 2700 kPa

Shear Modulus G 770  kPa

Initial Cohesion c 30 kPa
Frictional Parameter [ 0.45

Permeability k 1-107®% m2/(kPa s)
Biot’s Modulus Q 3.33.10* kPa

Biot’s Coefficient b 1

Fluid Density Pwo 1.0-10® kg/m?

II1.5.1. The undrained shear test

We first consider a layer L = 0.63 m thick with impervious boundaries at z = 0 and
z = L. A constant normal stress of ¢ = —200 kPa is suddenly imposed at ¢t = 0 and it
is maintained constant during the test at £ = L. The simulation is run by imposing a
shear displacement at x = L, with a constant rate of 45(L) = a = 4.0- 1078 m/s. Fixed
boundary conditions are assumed at z = 0 leading to the shear of the layer. The assumed
material parameters have been included in Table III.5.1. In particular, the Biot modulus
@ has been computed by means of the relation

1 ¢, 1—¢o
Q_Kw_*-v Ks

(I11.5.1)

where ¢ = 0.3 is the initial porosity, and &, = 10* kPa and k, = 10'® kPa are the
bulk moduli of the fluid and the solid phases, respectively. We consider a piece-wise
linear finite element discretization of the problem, as described in Section I11.4.2, with
a lumped form (row sum) of the capacity matrix S. More specifically, we consider the
enhanced finite element formulation presented in the previous section with the response
in the discontinuity given by a linear localized softening law (II1.4.22) with a localized
softening modulus of H = —1000 kPa /m. We also perform numerical simulations involving
standard isoparametric linear elements based on a continuum local model with strain
softening modulus of H = —25 kPa.

The shear stress 7 and the pore pressure p at the center of the layer versus the imposed
shear displacement are depicted in Figure II1.5.1.a for the newly proposed enhanced finite
element formulation and in Figure II1.5.1.b for the standard isoparametric finite elements.
In both cases we can observe an initial elastic range, characterized by a linear increase
of the shear stress 7 (constant across the layer by equilibrium) versus the imposed shear
strain v, together with a constant value of the pore pressure p and corresponding normal
effective o’ and total o stresses. Due to the assumed undrained boundary conditions in
this test, no rate effects appear in this elastic solution.
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FIGURE III.5.1 Shear layer of a dilatant material: undrained test.
Shear stress and pore pressure at the center versus shear displacement:
(a) Enhanced finite elements, and (b) standard isoparametric formu-
lation.
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FIGURE III.5.2 Shear layer of a dilatant material: undrained test.
Isochrones of (a) fluid content, (b) plastic shear strain. Solution ob-
tained with the enhanced finite element formulation with the 17 ele-
ments mesh; plots obtained with a lumped L projection to the nodes.
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FIGURE III.5.3 Shear layer of a dilatant material: undrained test.
Isochrones of the fluid flow Qw. Solution obtained with the enhanced
finite element formulation with the 17 elements mesh; plots obtained
with a lumped L2 projection to the nodes.
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FIGURE I11.5.4 Shear layer of a dilatant material: undrained test. of
the pore pressure p. Solution obtained with the enhanced finite element
formulation with the 17 elements mesh.
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To trigger the localization of the strain upon reaching yielding, an imperfection in the
form of a 1% reduction of the initial cohesion c is introduced in the element at the center.
The solutions thereafter involve a localized pattern, characterized by the activation of the
enhanced parameters approximating the jump of the displacements for the simulations
involving the enhanced finite elements. Computations are conducted with two different
discretizations of the sample, involving 17 and 45 equally spaced finite elements, respec-
tively. As observed in Figure II.5.1.a, the response obtained with the two meshes coincides
for the enhanced finite elements, verifying the lack of pathological mesh dependence of the
proposed formulation. This situation is to be contrasted by the strong mesh dependence
exhibited by standard isoparametric finite elements with continuum strain softening, as
depicted in Figure II1.5.1.b.

Figures II1.5.2.a and II1.5.2.b include the distributions of the fluid content and the
shear plastic strain, respectively, obtained with the enhanced finite element formulation
for the 17 element mesh. The localization of the plastic strain at the center is apparent.
Similarly, and due to the dilatant behavior of the discontinuity, the fluid content increases
at the center, while it decreases in the adjacent material, leading to the observed localized
pattern of the fluid content; see Figure II1.5.2.a. This kind of response is also shown in
Figure II1.5.3 by the induced fluid flow depicting a jump across the strong discontinuity,
with the fluid flow on each side towards the discontinuity at the center. We note that
these plots have been obtained with the use of a local lumped Lo projection of the values
at the center of the elements to the nodes followed by the averaging of the resulting nodal
values; the smooth distribution of the plastic quantities outside the central element is an
artifact of this projection. The spatial distribution of the pore pressure along the sample is
depicted in Figure II1.5.4 at different times for this solution. We can observe the decrease
of the pore pressure at the center due to the presence of the dilatant strong discontinuity
and the corresponding localized increase of the fluid content.

I11.5.2. The drained shear test

We assume free draining boundaries at both ends in this second test. The same
dimensions and material parameters summarized in Table IT1.5.1 are employed in this case.
The simulations are run also with an imposed shear displacement at z = L after imposing a
sudden initial normal stress of & = —200 kPa, which is also maintained constant during the
simulations. The draining through the boundaries introduces in this case a non-constant
distribution of the pore pressure, leading to rate-dependence even in the elastic range.
The goal in this test is to study the influence of these effects in the resulting localization
patterns. To this purpose, two constant strain rates 45(L) = a of a = 2.0- 103 m/s and
a=6.0-10"5 m/s are considered. The higher strain rates in this case are required for the
yield in the specimen to occur before the total dissipation of the pore pressures.

As in the previous section, we consider simulations based on the proposed enhanced
finite elements and standard isoparametric finite elements. A linear localized softening
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stress-displacement law of the form given in (II1.4.22) is assumed in the former, with
a localized modulus of H = —3000 kPa/m. The continuum strain softening modulus
assumed in this test is H = —75 kPa. Spatial discretizations involving 9 and 17 piecewise
linear elements in an equally spaced distribution are assumed.

Figure IIL.5.5 depicts the evolution of the shear stress and the pore pressure at the
center of the specimen versus the imposed shear strain. The rate-dependent effects are
clear in these plots. Figure II1.5.6 depicts the pore pressure distribution for the enhanced
finite element solution based on the 17 element mesh. The gradual dissipation of the pore
pressure after an initial build up due to the applied constant normal stress can be observed
in this figure, with its characteristic spatial distribution corresponding to one-dimensional »
elastic consolidation. Since the total normal compressive stress o is maintained constant,
the effective normal stress ¢’ = o + b p follows a similar distribution. Note that during
the initial elastic stages the normal and shear components of the deformation process are
entirely uncoupled, thus the applied shear strain has no effect on the fluid motion in this
range.

The specimen eventually yields at the center. To avoid the strong numerical sensitivity
that we have observed in capturing this yielding at the exact center, we also consider in
this case a 1% reduction of the initial cohesion ¢ at the center element. The plastic
strains localize at the center, leading to a sudden increase of the rate of dissipation of
the pore pressure, as observed in Figure II15.6 at t &~ 700 s for the strain rate of @ =
6 - 1075 m/s and the enhanced finite element formulation This spatial distribution of the
pore pressure clearly changes with the formation of the discontinuity, which acts as an
internal drainage. Note that negative pressures will eventually appear at the center; the
simple model considered in this work does not account for any limitation in this respect,
like the cavitation of the fluid.

Comparing the solutions obtained for the two different meshes in Figure 111.5.5 we
can conclude the following. For the proposed enhanced finite element formulation depicted
in Figure II1.5.5.a, a slight difference can be observed between each mesh. The observed
differences can be traced back to the different approximation of the fluid flow process by the
different spatial discretization and not by the non-objectivity of the localized dissipative
mechanism upon localization. This conclusion is drawn from the same slope obtained in
the shear stress plot by both meshes for each imposed strain rate. This situation is to
be contrasted with the solutions obtained with the standard isoparametric formulation
shown in Figure II1.5.5.b. The mesh dependence in this case is not only caused by the
approximation introduced by the integration of the fluid flow, but clearly also caused by a
non-objective resolution of the localized dissipative mechanism. Note the entirely different
slopes obtained in the shear stress evolution by the different meshes for each imposed strain
rate.
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ITI1.6. Concluding Remarks

We have presented in this paper a general framework for the characterization of strong
discontinuities in fully saturated porous media. Discontinuities in the displacements, with
the corresponding singular measures of the strains through the associated plastic strains,
have been shown to be consistent with a singular distribution of the fluid content. Physi-
cally this is a consequence of the dilatant response of these discontinuities, leading to the
accumulation of fluid mass along these surfaces of discontinuity and creating a discontinu-
ity of the fluid flow vector across them. The model example of a shear layer of a dilatant
material has been used to illustrate these ideas, including the formulation of enhanced
strain finite element methods incorporating without regularization these singular fields of
the strains and fluid content, as well as the discontinuous fluid flow vectors. The resulting
formulation has been shown to avoid the mesh-dependence observed when employing stan-
dard isoparametric finite elements based on a local continuum model in the shear driven
problems considered herein.

Furthermore, the appearance of these discontinuities has been directly related to the
response of the underlying drained material model, as in the discontinuous linearized in-
stabilities observed in the analyses in RICE [1975] and RUDNICKI & RICE [1975], among
others. It is important to emphasize that the fundamental consideration in the develop-
ments of the previous sections leading to this result is the continuity of the pressure field
(or, more precisely, the regular distributional character of the fluid flow). This considera-
tion is motivated by the structure of the mathematical equations, namely, the involvement
of second spatial derivatives of the pressure field in the conservation of fluid mass equation
for a positive permeability. We also pointed out similar considerations based on experi-
mental observations as reported, for example, in VARDOULAKIS [1996]. As shown in the
linearized stability analysis presented in RICE [1975] for a dilatant shear layer, distur-
bances in the short wave-length limit (zero length scale limit) lead to the instability of
the shear layer for the case of a strain softening drained response and physically positive
permeability. For the ideal purely undrained case, that is, for zero permeability, the above
continuity condition on the pressure is no longer required. As a consequence, the appear-
ance of localization is to be derived from the undrained, rate-independent response of the
solid in this ideal limit. The stiffer response of the porous solid under purely undrained
conditions puts then a severe demand in the numerical simulations near this limit case,
due to the need to capture very accurately the details of the local flow associated to fluid
mass conduction. These arguments seem to explain the very sensitive response in the nu-
merical simulations involving a very high strain rate, shown by the difficulty to capture the
localized solutions, as indicated in the previous section. Careful analyses of the effects of
the spatial and temporal discretizations in the development of these coupled phenomena,
including the interaction of the length scales associated to the numerical discretization, the
dissipative conduction processes, the assumed imperfections, and strain localization itself,
are required. We plan to address these issues in a forthcoming publication.
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Similarly, we are currently extending the finite element formulations presented herein
to the multi-dimensional case. General states of stress need to be considered, as well
as the interaction of possible different length scales in particular states of stress, like
the uniaxial compressive examples presented recently in ZHANG & AL [1998]. As shown
in ARMERO [1997a], strong discontinuities furnish a very efficient tool for the modeling
of localized effects while treating the involved small length scales as unresolvable. The
general framework presented in this paper will show to be crucial for this purpose, as it is
the current focus of our work in this area.
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IV.1. Introduction

The Arbitrary Lagrangian-Eulerian(ALE) formulation of continuum mechanics was
intially developed to circumvent the limitations of pure Eulerian and pure Lagrangian
formulations. In particular, the fundamental idea is to allow the computational mesh to
move in an arbitrary manner independent of the physical material motion. By using this
approach, the severe mesh distortion of a pure Lagrangian formulation or the complicated
boundary tracking of a pure Eulerian formulation can be avoided. Two review papers
which discuss the general notion of ALE formulations are BENSON [1989] and BENSON
[1992].

Within the context of fluid mechanics, the ALE approach has been used recently
by VENKATASUBBAN [1995]. HUERTA & Liu [1988] and CHIPPADA, RAMASWAMY &
WHEELER [1994] have considered fluid mechanics problems with free surfaces. Another
important area of research is fluid-structure interaction. The reader may consult No-
MURA [1994] and NOMURA & HUGHES [1992] for more information. The ALE formulation
has obvious appeal in these classes of problems. However, in this work we are primarily
interested in non-linear solid mechanics.

A considerable amount of work has been done within the field of non-linear solid me-
chanics. Authors have considered rolling problems (Hu & Liu [1993], Hu & Liu [1992]),
metal forming and plasticity problems (GHOSH & KIKUCHI [1988], GHOSH & KIKUCHI
[1991]) and contact problems (GHOSH [1992]). An important area of research is the numer-
ical simulation of localized failure in solids (GHOSH & RAJU [1996], PIJAUDIERCABOT &
HUERTA [1995]). The paper of HUERTA & CASADEI [1994] provides a good general review
of ALE formulations in solid mechanics.

Other researchers have considered what is known as adaptive remeshing. In this
strategy, an entirely new mesh is generated for the problem once the existing mesh is
judged unsuitable. The new mesh is entirely unrelated to the previous mesh, except
of course for preservation of the boundary. In a general sense, the adaptive remeshing
approach and the ALE approach may be considered related. Much of the work in adaptive
remeshing can be found in the papers of CAMACHO & ORTIZ [1997], LEE & BATHE [1994]
and ORTIZ & QUIGLEY [1991].

We propose in this work an ALE formulation relevant to solid mechanics. ‘In particular,
we consider the numerical simulation of finite strain elasticity and plasticity. Unlike much
of the previous ALE performed, the approach here is fully implicit. RODRIGUEZ-FERRAN,
CASADEI & HUERTA {1998] have recently discussed both explicit and implicit solution
strategies for the ALE problem, but for the so-called hypoelastic models of elastoplasticity
in rate form. The interest in this work, however, lies in the consideration of multiplicative
models of plasticity, rather than rate models, involving a hyperelastic relation in particular.

The present formulation is based critically on the work of YAMADA & KIKUCHI [1993].
In that paper, the authors consider an implicit ALE finite element method for elasticity
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problems. The general basis of the formulation is that the physical particle motion is a
composition of two mappings, a mesh motion and a material remap. The authors present
only a fully coupled solution strategy; namely, The equilibrium equations couple the mesh
motion and material remap. The consideration of purely elastic models in the quasi-static
limit, however, simplifies considerably the problem, since the material remap do not imply
the advection of any internal variables as it is the case in elastoplasticity, the focus herein.

We develop in this work the complete treatment of multiplicative finite strain elasto-
plasticity in this context involving a direct solution of the material map. In particular, the
direct use and interpolation of this mapping, in contrast with alternative ALE approaches
for finite strain elastoplasticity, leads to a considerable simplification of the advection of
internal variables. In fact, this advection can be accomplished by an exact simple particle
tracking, without the need of complex approximations of the pure advection equation. This
particle tracking is efficiently accomplished by the use of the appropriate description of
the reference mesh through its connectivity graph. We develop these ideas in the context
of a staggered strategy for the solution of the equations. A Lagrangian step is followed
by a material remap calculation followed by the aforementioned advection based on this
computed material remap. The proposed procedure shows to be, in particular, a very
efficient strategy in its computational cost.

An outline of the rest of the paper is as follows. Section IV.2 summarizes the con-
tinuum equations of the ALE approach, including a brief description of multiplicative
plasticity in Section IV.1.2 as considered in this work. Section IV.3 describes the general
approach proposed herein for the solution of the ALE equations. In particular, we de-
scribe the algorithms considered for the material remap based on a measure of the mesh
distortion. The proposed treatment for the advection of the plastic internal variable is
discussed in Section IV.4. We present in Section IV.5 several representative simulations
depicting the performance of the proposed approach. Concluding remarks are included in
Section IV.6. Finally, we present in a series of appendices several details of the considered
implementation. More specifically, Appendix IV.l summarizes the specific constitutive
models considered in the numerical simulations of Section IV.5, Appendix IV.2 presents a
summary of the finite element equations.

IV.2. Continuum Equations of the ALE Formulation

There are many references on the kinematics and dynamics of ALE continuum me-
chanics. The equations we will discuss can be found in papers such as HUERTA & CASADEI
[1994], BENSON [1989], YAMADA & KIKUCHI [1993] and GHOSH & KIKUCHI [1988]. Some
other possible references are listed alphabetically in the bibliography of this report.
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IV.2.1. ALE kinematics

Firstly, assume there exists a fixed reference (computational) domain M independent
of any physical motion of the body. There also exist two additional domains denoted
by 2 and {2, which are the material and spatial configurations of the physical body,
respectively. The physical particle motion is given by the one parameter family of dif-
feomorphisms ¢; : £20 — 2. The subscript ¢ represents time. Assume there exist two
additional diffeomorphisms x; : M — 2, and P : M — 2 which relate the material
and spatial configurations to the reference domain. By this construction, ¢; = 4, o x; L.
Setting x: = id, so that ¢; = 1, is known as the Lagrangian formulation and is com-
monly used in solid mechanics. Setting 1; = id, so that ¥t = Xt, is known as the Eulerian
formulation and is commonly used in fluid mechanics. We, of course, are interested in the
case when neither mapping in necessarily the identity. Figure (IV.2.1) is a helpful visual
representation of the present discussion.

Define the tangent maps F'l/) = D and Fy := Dx;. The physical deformation
gradient is defined by F' := Dy,. By application of the chain rule, we have the important
relationship F = F, Fx—}. If one assumes fixed cartesian coordinate systems for each of
the three domains, further developments can be simplified. Let points in M be denoted
by their position vector m. Let points in £2y be denoted by position vector X. Let points
in {2 be denoted by position vector x. Given this, it is possible to then write

Ox
Fy=o— (Iv.2.1)
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ox
= % (IV.2.3)

Define the Jacobians J := det(F), Ty = det(F¢) and Jy := det(Fy). Next, noting that
ine may view x as a function of X and ¢, define the physical particle velocity as

ox(X,t) 0Ox

= B (IV.2.4)

X

where the introduced notation means the derivative of the position x with respect to time
t while holding the position X fixed. This notation is often used in the literature and we
shall adopt it henceforth here. Of course, x may also be viewed as a function of m and
time . Define the mesh velocity as

_ 0x(m,t) ox
T8t ot

(IV.2.5)

U - .
m
where again use is made of the newly introduced notation for the derivative of the position
x with respect to time ¢ while holding the position m fixed.

IV.2.2. Material derivative

It is now possible to develop useful expressions for what is commonly referred to as
the material derivative. For notational convenience, define

o[

GRADm[] := ey (Iv.2.6)
GRAD y[] = 2l (IV.2.7)
and 5
grad, [ ] := 5&'(—] (IV.2.8)
Let f be a smooth scalar valued function defined on £2,. We may write
f(X,t) = f(m(X,1),t) = f(m,1). (IV.2.9)
The material derivative of f, f , is defined as the derivative
. _Of(X,1) _ of
f= o = Bt X (Iv.2.10)
Using the chain rule, write
. of - Om(X,t
= 6—1; + GRADm[f] - —'-"é—t—). (IV.2.11)
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For convenience, the tilde notation is dropped and the above simply written, consistent
with the new notation,

: om

Using the above results alternative expressions can be developed for the material velocity
v. We may write

V=0, + F'P Ey l (Iv.2.13)
which results in 5
M\ p -
3 | x F¢ (v — v). (Iv.2.14)
Making a substitution into (IV.2.12) yields
:  Of| -1
f=%5;| +GRADm[f] Fy™ (v - vn). (IV.2.15)
Ot |m

Noting that, by simple use of the chain rule,

(GRADm[f])Fy, ™" = grad,|[f] (IV.2.16)
equation (IV.2.15) becomes
f= ? + grad, [f] - (v — v). (Iv.2.17)
tim

This is the classical relationship between the material time derivative, the referential time
derivative and the spatial derivative. It will prove useful in the development of the ALE
balance laws.

Finally, consider the material derivative of the material position vector X. This
produces the equation

oX om
X=0= e + GRADm@[X] gt_lX (IV.2.18)

Noting Equation (IV.2.2) the above may be rearranged. This produces the desired results

om| 10X
3 | x = Fx™ = - (IV.2.19)
and ) oX
f= l' —~ GRADm[f]- P! —— (IV.2.20)
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This equation will prove useful in subsequent developments involving implementation of
plasticity within an ALE context.

IV.2.3. The balance laws

i. Conservation of mass. The Eulerian form of conservation of mass may be written
p+ pdivg[v] =0 (Iv.2.21)

where p is the mass density and divy[-] is the spatial divergence operator. Using the result
in (IV.2.17), this equation can be rewritten as

% + grad,[p] - (v — vp) = —pdivy[v] , (Iv.2.22)
Ot |m, :

showing explicitly the advection of the spatial density.

ii. Balance of linear momentum. The Eulerian form of balance of linear momentum
may be written

pv = divx[o] + pb (IV.2.23)

where o is the Cauchy stress tensor and b is the body force density. Again, using the
relationship for material derivatives, we can rewrite the equation (IV.2.23) as

p v + p(grad, [v])(v — vy,) = divy[o] + pb . (IV.2.24)
ot |m

Some of the simulations presented in this paper consider the quasi-static approximation
defined by the simpler equation

divk[o] + pb =0, (Iv.2.25)

avoiding the need of considering the advection of the velocity v (or, equivalently, the linear
momentum pv) in (IV.2.24).

Remark IV.2.1 There exist equivalent alternative equations for the above balance laws.
The laws can be written with respect to the reference domain and can also be expressed in
what is known as conservation form. It will not be necessary to discuss these alternative
representations for the quasi-static problems considered herein. The reader may consult,
for example, BENSON [1989] for the conservation forms of the equations. A more detailed
derivation of the ALE balance laws can be found in GHOSH & KIKUCHI [1988] O
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IV.2.4. Boundary conditions

Along the boundary of the domain, kinematical and dynamical boundary conditions
must be defined. Assume the boundary 842 admits the decomposition 812 = T, U T; where
Iy I; = @. Additionally,

v=0on [, (IV.2.26)
on=ton I} (Iv.2.27)

where ¥ are prescribed velocities, T are prescribed tractions and n is the outward unit
normal to the spatial domain. There is an additional boundary condition if some part of
the boundary is a material surface. The appropriate boundary condition is

(v—vp) - n=0. (Iv.2.28)

It will of some benefit to derive an alternative equivalent form for this boundary
condition. Let Nx denote the outward unit normal to the boundary of the material
domain £2y. Let I C 812 be an open subset of the boundary of the spatial domain and let
I'o = ¢~ 1(I') C 8. First, we note from equation (IV.2.13) that

om

V— Uy = F1,b WIX (IV.2.29)
Using equation (IV.2.19), this may be rewritten as
0X 0X
—_ _ — -1 = - — L.
v — Uy Fy Fy o |, F o | (Iv.2.30)
Now, we may write
O=/(v—vm)-ndF
r
= -—/ FQ(— -ndl’
r Ot
= - / OX| | FTndr
r Ot |,
- [ %X - FTJF~T Ny dI,
ot
Io m
- _/ OX\ I NydD, (IV.2.31)
ro 0t |m .

where the well known transformation (Nansen’s Formula) for deforming area elements has

~ been used. Since the above must hold for all open I" and thus for all open I, it must be

that
17,4

5, JNy =0 (IV.2.32)
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pointwise. Since J > 0 this reduces to
0X
ot |

This form will prove more useful for future numerical implementation.

Nx =0 (IV.2.33)

IV.2.5. Weak formulation

Let 1 be a kinematically admissible virtual displacement field defined on £2. In the
present context, every choice of 77 can be characterized by

n=2d6wpox? (Iv.2.34)

where §1) is a kinematically admissible virtual displacement field defined on M. Let @
and p represent kinematic volume and stress resultant pressure variables, respectively.
Additionally, let 6 and dp be admissible variations of  and D, respectively. Solving the
equilibrium equation, along with compatibility equations for # and constitutive equations
for p, is weakly equivalent to the following set of equations:

/ grady 1] : [Liev™ + pJ 1] d% = Prn(n) (IV.2.35)
2
/ 50 [1—1 - ] dfy =0 (IV.2.36)
2, 36
/ p(J = 0)d2 = 0. (IV.2.37)
20

Igev is the rank four deviatoric projection tensor defined by Igept := t — %trace(t)l for
any rank two tensor t, not necessarily symmetric. ¥ is the Kirchhoff stress, computed as
a function of

F’(u¢,ux,9) = (—Zuv’:ﬁ,ux—)-) F(u¢,ux). (Iv.2.38)

Py represents external loading.

Remark IV.2.2 Within the context of finite strain elasticity, the above equations can
be viewed as the variation of an energy functional. Assume that the external loading on
the body may be characterized by a potential function IT,,;. Let W (F) be the isothermal
free energy function defining the elastic response of the material. Proceeding, define the
potential energy for the problem as

(g, 0.0) = [ [W(F)+p(7 = 0)] a0ty + Mo (1v.2.39)

This three field expression can be found in SiM0, TAYLOR & PISTER [1985], and has been
discussed more recently in SIMO & TAYLOR [1991]). A computation of the first variation
of the above generates the system of three equations stated above. |
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IV.2.6. Multiplicative plasticity

The goal here is to introduce a formulation for isotropic plasticity at finite strains
within a three-dimensional context. The discussion follows very closely the presentations
in SiMO & MIEHE [1992] and Simo0 [1992]. Also, many of the standard and well known
results concerning isotropic tensors and isotropic tensor functions can be found in the
appendix of GURTIN [1981].

Let £ be the isothermal elastic domain, defined in the spatial configuration of the
body as
€:={(r,9) €R": ¢(7,q) <0} (IV.2.40)

where 7 is the Kirchhoff stress and q is a scalar stress-like isotropic hardening variable. The
scalar valued function ¢, assumed convex, is commonly referred to as the yield function.
The principle of invariance under superposed rigid body motion restricts ¢ to be a isotropic
function of 7. Invariance requires that

#(QTQT,q) = ¢(7,9) YQ € SO(3). (Iv.2.41)

We decompose the deformation gradient into elastic and plastic parts via the multi-
plicative split F = F¢FP. For subsequent developments, define two strain measures

T -1
G = [FP FP] (IV.2.42)
and .
b := F°F° . (IV.2.43)
The relationship
b°* = FGPFT (IV.2.44)

will prove useful for later developments. Set
JP := det[F?] = (det[G?])'/? (IV.2.45)

and
J¢ := det[F¢] = (det[b%])"/? (IV.2.46)

so that J = J¢JP. Finally, time differentiation of (IV.2.44) gives
b® = 16° + b°17 + £4,b° (IV.2.47)

where 1 := FF-1 is the spatial velocity gradient and £4b° := FGPFT is called the Lie
Derivative of the elastic left Cauchy-Green tensor be.

Additionally, and consistent with the assumption of isotropy, we assume the existence
of an isothermal free energy function W(b%, &), where £ is a scalar strain-like isotropic
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hardening variable. The function W is often referred to as the strain energy density

function. This function must also satisfy the invariance requirement
W(Qb°QT,¢) = W(b%,€) VQ € SO(3).

The equations for this general plasticity model take the form :

1. Hyperelastic response defined by free energy function

ow

e
obe b

T:=2

2. Associative Evolution Equations :

—l.cvbe :=73—¢3be = cr=-o(F1|2]|F)gr
2 or or

o¢

§:=)\aq

3. Kuhn-Tucker Conditions
A20 ¢(r,q9) <0 Ag(T,q) =0.

where A is the consistency parameter.

(IV.2.48)

The previous flow equations have an alternative form within the ALE context. Using

equation (IV.2.20),the flow rule for GP may be rewritten as

OGP _10X _1 |09
- - P, 17 - _ 11=27 P
5 GRADm [GP] Fy 5 2\ (F [ 61-} F) G

The hardening law for € has a similar form.

(IV.2.49)

Remark IV.2.3 An important property to note concerning the flow rule is that for
pressure insensitive yield criterion, the plastic volume J” is conserved. This is shown

simply as follows.
JeJP = J — Jr je
. 1 L
= Jtraceld] ~ 2JPJ°b° b

= Jtrace[d] — %Jbe_1 : (16° + b°1 + £4b°)

= Jtrace[d] — Jtrace[d] — J%.ﬂvbe b
0

=JA [a‘r

] be: bt

. 8¢
= J)trace [.3_1']

=0

(IV.2.50)
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assuming that the normal to the yield surface is traceless. This will be the case for the
classical von Mises yield criterion based on the deviatoric part of the Kirchhoff stress
tensor. This also implies that det{GP] = 0 and thus det[G?] = 1.

IV.3. A Staggered Approach to the ALE Problem

We develop in this section a staggered method for the solution of the ALE equations,
involving a separate solution of the material and spatial deformation mapping. This strat-
egy is especially convenient for the treatment of the advection of internal variables in the
context of elastoplasticity, leading to computationally atractive methods. Section IV.5
includes also purely elastic numerical examples treated with a fully coupled solution of the
material x and spatial ¢ deformation mappings. The absence of any advection of internal
variables simplifies considerably the problem.

IV.3.1. The discrete equations

The continuum equations summarized in the previous section are discretized in space
and time using standard techniques in the context of the finite element method. Appendix
IV.2 summarizes the mixed finite element implementation considered in this work.

The temporal discretization considered corresponds to the standard Newmark formu-
las, in terms of the algorithmic parameters v and 3,

Ma'(thn—i-l) + fint(m(X, tn-§-1) = fe:t:tn+1
(X, tns1) = (X, tn) + Atv(X, thy1) + AL (28a(X, thi1) + (1 — 20)a(X, t,))

(X, tht1) = v(X, tn) + At (va( X, tn+1) + (1 — v)a(X, t,))

(Iv.3.1)
for the material acceleration a(X,t) and velocity v(X,t) fields, and the spatial position
z(X,t) = ¢¥(X,t). The nodal internal and external forces, corresponding to the two terms
in the right-hand side of (IV.2.23) have been denoted fin: and fe,:, respectively, with M
referring to the mass matrix of the assumed finite element interpolation. A typical time
step [tn,tn+1] has been considered. The dependence on the material particle X has been
indicated in these expressions to emphasize its constancy, reflecting their nature as material
time derivatives. Therefore, the different fields at ¢,, and ¢,,..; correspond to different mesh
points in the ALE context, requiring then their advection as the following sections.

IV.3.2. The global approach

The global approach can be easily outlined as follows. Assume that all variables are
known at time step n. This includes the positions X,, and x,, the mixed fields p,, and
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0r and the internal variables GE and &,. The solution strategy proceeds in the following
steps :

1. Perform a chosen number of pure Lagrangian steps. Hold uy fixed and solve for U
p and 6. For an associative flow rule model of plasticity, such as the one considered
herein, the tangent matrix for this step is symmetric.

2. Perform mesh smoothing and advection :

2a. Hold Ugp fixed. Choose Uy to minimize mesh distortion. This will define Xny1-
This step is discussed in Section (IV.3.3).

2b. Having defined X1, advect plastic variables to define the new trial state, and
the spatial positions, velocities and accelerations appearing in (IV.3.1) for the
dynamic case. This step is discussed in Section (IV.4).

2c. Hold uy fixed. Having determined the new trial state, solve for Ugy P and 6.
This is an equilibrium correction which is necessary since we have changed Uy

3. Return to Step 1.

A discussion of the strategies for mesh smoothing and plastic variable advection is presented
next.

Remarks IV.3.1.

1. The above approach is also applicable to finite strain elasticity. In such a case, simply
omit step 2(b) above for the plastic variables.

2. It may not be necessary to perform step 2c. One may simply skip to step 3 and carry
any unbalanced forces on to the next load step. |

IV.3.3. Mesh distortion measures

The first objective is to measure the distortion of the spatial mesh. To this puprpose,
define

Fy = J¢‘l/3F,¢,. (IV.3.2)

Let
51/) = F¢F,;Z and C_'¢ = Fﬂiﬁd’ (Iv.3.3)

Both ODDY, GOLDAK & BIBBY [1988] and SARRATE [1996] have suggested using

Wa(Fy) := l|dev byy[|* = ||dev Coyll” =dev by, : dev By (IV.3.4)
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as a measure of mesh distortion, where dev[] := [] — 1/3(trace[])1. Note that W, as
defined is simply an example of a properly invariant stored energy function. In fact, one
could use this function to determine the stress response for a finitely elastic material.

With this fact in mind, any properly invariant scalar energy function can be used to
measure mesh distortion. The only requirement would be that the function be indepen-
dent of volumetric distortion. Purely volumetric deformation is not a factor in element
distortion. Thus the requirement on the function W, is that

Wa(A) =Wy(AA) VYA>0 VA such that det(A) > 0. (IV.3.5)

Any invariant function W, which depends only on F_’,(/) is an admissible choice.

Remark IV.3.2 It is possible to choose, for example, a Neo-Hookean or Mooney-Rivlin
response function. Another possible choice is a logarithmic stretch model of elasticity such
as the one used in our J; model of plasticity. In these cases, we would simply set the
volumetric energy parameter to zero. O

IV.3.4. Mesh smoothing (determination of x)

We discuss in this section the implementation of step 2a above. This involves choosing
Uy SO as to minimize spatial mesh distortion as defined by a scalar energy function W.
Assume step 1 above has been performed. We now have a spatial mesh distortion F"b’ a
material remap Fy and most importantly the physical deformation F := F¢FX—1. Note
that

Fy =FFy. (IV.3.6)

Now, holding F fixed, minimize
y(Fy) = / Wa(FFy) dM. (IV.3.7)
M

The minimization of this functional requires the determination of uy.

We define

T¢ = ——F¢.

(IV.3.8)
OF,,

The first variation ( weak form ) of equation (IV.3.7) is

611, = / FT1-¢, : grad,n dM =0 (Iv.3.9)
M
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where 7 is a kinematically admissible virtual material remap displacement field defined on

M.

IV.4. An Advection Method Based on Particle Tracking

We discuss in this section a procedure for the advection of the internal variables due
to the material motion. To this purpose, we first rewrite in Section IV.4.1 the problem in
the classical form of the pure advection equation. Section IV.4.2 summarizes some general
properties of this equation as well as its numerical treatment through the classical method
of characteristics; see PIRONNEAU [1989], page 75, for details. The availability of the actual
material mapping in our case of interest identifies a related but much simpler approach to
the integration of the advection step. These ideas are developed in Section IV.4.3.

IV.4.1. Plastic variable advection
Consider the plastic internal varible GP. Noting equation (IV.2.49), the evolution

equation for GP is

OGP
ot

~ GRAD, [G] - Fy ™ 6—X‘ = —2) (F-l [Q‘é} F) G? (IV.4.1)
m ot m or

During the advection step, one must transport G by solving the above with zero right
hand side (A = 0). More precisely, the advection equation to be solved is

p
% 10X 0. (IV.4.2)
m

- GRADm [G7]- Fy ' 2| =
m

The same equation is used to determine advected values of £ and any other internal vari-

ables. Define
10X

a=-Fy 2 . (IV.4.3)
With this notation, equation (IV.4.2) reads
GP
oG? +a-GRADmp [GP] =0, (Iv.a4g)
ot |m

corresponding to the pure advection equation. We discuss next a general treatment of this
equation.

IV.4.2. The pure advection equation
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The considerations in the previous secion led to the consideration of the equation

d

p (m,t) + a(m,t)- GRADypé(m,t) =0 (IV.4.5)
on the fixed domain M during the plastic variable advection step. The variable ¢ may
represent the components of the plastic strain G?, for example. In the above, t is time, a
is the advection velocity and GRADyy, is the standard gradient operator. Let X (1), with
T a scalar time-like variable, be the solution of

2 X(r) = a(X(r), ) (IV.4.6)

subject to the condition X (t) = m. Given that a is the velocity of the material particles,
X is the trajectory of the material particle that passes m at time t. Since X depends
on the parameters m and ¢, we denote the solution by X (m,t; 7). This solution is often
referred to as the “characteristic” of the hyperbolic equation (IV.4.5).

The important result of the above can be obtained by application of the chain rule :

d d
¢ (X(m,tir),m) = 7¢(m.t) + a- GRADm¢(m, ). (IV.4.7)

t=1

Then equation (IV.4.5) can be written

d—‘j_—q& ~0 (IV.4.8)

when defined on the domain 2 of material particles X as defined by the mapping of
equation (IV.4.6). The physical interpretation of this is simple : ¢ is temporally constant
along the path of a given material particle X. In other words, ¢ is transported along
the “characteristics” X of the advection equation. If it is possible to track the material
particles X, this will lead easily to determining advected values of 0.

Remarks IV.4.1.

1. As indicated in Section IV.3.1, the velocity and acceleration fields require also to be
advected in the dynamic case. The above development apply to these cases with
#(-) denoting each component of these fields. To this purpose, the nodal values are
considered, that is, m refers to a node in this case, with the corresponding nodal
values of these fields defining their conforming interpolations.

2. Recall that X is actually given by the material remap X, and that the velocity a is -
actually computed from X, rather than converse which equation (IV.4.6) implies. In
our case, a is defined by (IV.4.3). Nevertheless, the previous arguments are still valid.

O
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IV.4.3. Numerical particle tracking

One approach to solving equation (IV.4.5) numerically is the Euler scheme
d(m,t + At) = ¢(m, t) (Iv.4.9)

where
m:=m —a(m,t+ At)At. (IV.4.10)

In the above, t denotes time as before and At is the numerical time step. This is a backward
particle tracking technique. Higher order accurate approaches are also available. The
above technique is reviewed on pp.84-90 of PIRONNEAU [1989]. This method is obviously
not exact. The backward tracked particle locations m are only approximate unless a is
spatially and temporarily constant. In our case, this approach can be written as

m=m+ Fy'(m,t) Auy (IV.4.11)

where Auy is the displacement increment to the material position X (see Appendix
Iv.2.1).

We shall not use the Euler scheme just presented. We are already tracking particles
ezactly. The finite element displacement field uy is exactly the motion of the material
particles X relative to the fixed mesh coordinates m. Thus the chosen advection technique
is to solve for m by solving the material particle tracking equation

X (,t) = X(m, t + At) (IV.4.12)

where X is the material particle locations in §25. This equation can be rewritten (see
Appendix IV.2.1)

m + Ux(’ﬁl, t+ At) =m+ ux(m, t). (IV413)

Having determined 71, the advected scalar field may be computed by

Padvected () = Punadvected (1) (IV.4.14)

This must be done at each quadrature point m of the mesh after the smoothing step has
determined new values of Auy.

Equation (IV.4.13) is non-linear. There exist at least two possible ways to solve it.
The first is a simple fixed point iteration. To this purpose, equation (IV.4.13) can be
rearranged as

m=m+uy(m,t) — uy(m,t+ At). (IV.4.15)

The above equation is now in the form of a fixed point iteration for 1. Alternatively, one
can use Newton’s method to solve the residual equation

(M) := [+ uy (|, t + At)] — [m + uy(m,t)] =0, (Iv.4.16)
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FIGURE 1V.4.1 Particle tracking. Computation of 7

a rearrangement again of (IV.4.13). In this case, the tangent at each Newton step is given
by

or Ouy(m,t+ At)
— =1+
om om m=1n

= Fy(m,t+ At). (IV.4.17)

In principle, the convergence of the fixed point iteration is only linear. The convergence
of Newton’s method is quadratic. In all of the numerical simulations, Newton’s method is
used. No problems have been noticed in the convergence of this approach.

IV.4.4. Additional practical considerations

One issue is how to determine which element contains the new point m. This determi-
nation must be performed at every Newton step until convergence is achieved. Given that
each element is a convex set (otherwise negative Jacobians are detected), the inside/outside
check is not difficult. Simply check the components of the new point with respect to a
tangent/normal coordinate system originating at the midpoint of each element side. The
normal component must be negative for the point to be inside the element. See Figure
IV.4.2.

The issue of the order in which to check the elements is more important. One could
simply loop over all the elements starting from element one, performing the inside/outside
check for each element. This “bucket search” is clearly inefficient. The most probable
situation is one in which the new point 7 is inside an element which in geometrically close
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\

® Out

FIGURE IV.4.2 Quadrilateral finite element as a convex set

to the original element containing the quadrature point at position m. With this in mind,
we have chosen to determine the order for checking by using a breadth first search of the
element connectivity graph.

A third issue is that of local interpolation for the plastic internal variables. In all
probability, the new point 7 will not be a quadrature point. Thus it is necessary to
interpolate for the the internal variables locally at the element level. We could of course
project the quadrature point values onto a continuous interpolation defined by the natural
coordinate basis functions {1, Ly, Lo, L1 L5} defined on the parent domain [-1,1) x[-1,1].
A discontinuous interpolation is also possible. Note that in each of the subdomains [—1, 0] x
[-1,0], [0,1] x [~1,0], [0,1] x [0,1] and [~1,0] x [0, 1] there is one quadrature point. See
figure (IV.4.3). Define the interpolation as constant over each of these subdomains, equal
to the value at the quadrature point which the domain contains. Since the interpolation
is locally constant the constraint det GP = 1 will be preserved.

Having defined an interpolation in terms on the natural coordinates of the element, we
need to determine the natural coordinates of the point whose mesh coordinates are 7. Let
m(Ly, Ly) represent the mapping from the domain [~-1,1] x [~1, 1] to the physical domain
of the element in question. The following problem needs to be solved : find (L1, Ls) such
that mi(Ly, Ly) = . If the element is a parallelogram, this problem will be linear. In
general it is non-linear. It can be solved using Newton’s Method, a standard approach
for non-linear problems. A reasonable initial guess for (L, L) is (0,0). LEE & BATHE
[1994] have used Newton’s method to solve this same problem, referring to it as the inverse
isoparametric mapping technique.
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FIGURE IV.4.3 Local Interpolation on Quadrilateral Element

Remark IV.4.2 In the absence of advection, i.e. Auy = 0, this approach is ezact at
the quadrature points. 0

IV.5. Representative Numerical Simulations

In the following, the finite elasticity problems are performed using a fully coupled ALE
solution strategy. Please see Appendix (IV.2) for more details. The plasticty calculations
are performed using the staggered ALE approach just discussed. All simuations use the
well known Q1/PO0 four node quadrilateral element. ( bilinear displacements and constant
mixed variables; see BREZZI & FORTIN [1990)).

IV.5.1. Patch test

We perform a pure tension patch test in an axisymmetric setting. We consider a
3x3 square patch discretized with 4 finite elements. The material parameters chosen are
c1 = 1.5, c; = 0.5 and k = 103. We perform five augmentations (see Appendix IV.2) per
load step to enforce the incompressibility constraint. A total of 5 load steps is used to
reach the final deformation shown in the figures. For a given node, there are four degrees
of freedom. We have two displacements for 9 and two displacements for X- Let us order

these (u¢)1, (u¢)2, (ux), and (uy),. At a given node, we can have no more than two
active degrees of freedom.
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TABLE IV.5.1 Patch Test. Nodal constraints

Node Number A(u¢)1 A('u,,‘/) )2 A(ux)1 A(ux)2
1 fixed free fixed fixed
2 free free fixed fixed
3 fixed free fixed fixed
4 fixed fixed fixed fixed
5 fixed free free fixed
6 fixed free fixed fixed
7 fixed free fixed fixed
8 free free fixed fixed
9 fixed free fixed fixed

TABLE IV.5.2 Patch Test. Nodal displacements

Node Number A(uw)1 A(uw)2 A(uy), Auy),
1 0 - 0 0
) - - ~3/10 0
3 3710 = 0 0
4 0 0 0 0
5 73720 - ~ 1 3/20
6 3/10 - 0| -3/10
7 0 - 0 0
8 m = 3710 0
9 3/10 - 0 0

The nodal constraints for this problem are summarized in Table IV.5.1. Table IV.5.2
includes the imposed displacement increments proportionally per load step. All of these
constraints are consistent with the boundary conditions discussed in the chapter on ALE
continuum mechanics. In particular, by our choices we satisfy

uy - Nx =0 (IV.5.1)

pointwise, which in this quasi-static setting is equivalent to the boundary condition

80X
i) Mx=0 (IV.5.2)

discussed in a previous chapter.

Figure IV.5.1 shows the mesh motion relative to the reference domain. Figure IV.5.2
shows the material remap relative to the reference domain. We note that the stresses,
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FIGURE IV.5.1 Mesh motion U, and reference domain

\

2

FIGURE IV.5.2 Material remap U, and reference domain

although not shown here, are constant and match pure Lagrangian calculations. Thus the

formulation passes this patch test.

IV.5.2. Indentation of an elastic block

Now consider the indentation of an elastic block in an axisymmetric setting. YAMADA
& KIKUCHI [1993] consider a very similar problem in a plane strain setting. Consider a 2x1
block discretized with 32x16 Q1/P0 finite elements. Our material parameters are c; =15,
c2 = 0.5 and x = 10*. We shall prescribe negative nodal displacements on the left half of
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TABLE IV.5.8 Indentation of an elastic block. Interior nodal condi-
tions

(ug) | (). | a), | (),
fixed free free fixed

IS 1

1=

FIGURE 1IV.5.3 Indentation of an elastic block. Reference domain

the upper face of the block. The nodal displacement increment per load step is —0.005. A
total of 75 load steps are performed. For nodes in the interior of the domain, we prescribe

On the bottom boundary we prescribe (u¢)l =0, (“¢)2 free, (uy), = 0 and (ux), =
0. On the left side boundary, we prescribe (11,1/))1 = 0, ('u,,(/))2 free, (uy), = 0 and
(ux), = 0. On the right side boundary, we prescribe (u,‘/,,)1 =0, (u¢)2 free, (uy), =0
and (uy), = 0. On the left half of the upper face, we prescribe (uw)1 = 0, (u,L/,)2 to
be the negative nodal displacements discussed above, (ux), =0 and (ux), = 0. Finally,
on the right half of the upper face, we prescribe ('"'1,11)1 free, (u¢)2 free, (uy), = 0 and

(ux), = 0. All of these constraints are consistent with the boundary conditions discussed
in the section on ALE continuum mechanics.

Figure IV.5.3 depicts the reference mesh. Figure IV.5.4 shows the mesh motion at
final deformation. Figure IV.5.5 shows the material remap at final deformation. Included
for reference purposes is a pure Lagrangian calculation of the same problem. However,
the pure Lagrangian calculation did not converge at load step 63. The deformed mesh for
the Lagrangian calculation after convergence at load step 62 is shown in Figure IV.5.6.
We see, at least visually, that the results of the ALE calculation are similar to that of
the pure Lagrangian calculation. In fact, in this case the element distortion of the ALE
formulation appears to be less severe than that of the Lagrangian formulation, particularly
in the neighborhood of the obvious singularity.
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FIGURE IV.5.7 Necking problem. Deformed Lagrangian mesh.

IV.5.3. Necking of a circular bar

Consider the necking of a circular bar. This is the same problem as considered by
SiMo [1988b]. Only 1/4 of the domain is discretized. The bar 53.334 in length. Thus the
computational domain is 53.334/2 is length. The radius of the bar is 6.413. The material
properties are a follows : K = 164.206, u = 80.1938, oo = 0.450, 0o, = 0.715, § = 16.93
and H = 0.12924. The radius of the bar is reduced to 0.995 of the original radius to
introduce a defect and induce a necking response.

The bar (a quarter domain) is extended to a total elongation of 7. This is performed
using fifty(50) proportional displacement increments. The final deformed mesh for the
pure Lagrangian calculation is shown in Figure IV.5.7. For ease of visual interpretation,
the entire domain is shown in the figure.

For the ALE calculation, smoothing has been preformed during the first 45 time
steps. The last 5 are pure Lagrangian. The material remap x is determined using a
Mooney-Rivlin energy function with ¢;/c; = 3. In this case, unlike those that follow,
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FIGURE 1IV.5.8 Necking problem. Deformed ALE mesh necking
problem at elongation 7.0.

the determination of x is based only on Fh;. In other words, the smoother performs
calculations based the assumption that F is of the form F := I + Fyes ® E5. Other
components are not considered. The final deformed mesh for the ALE simulation is shown
in Figure IV.5.8. The final material remap x is shown in Figure IV.5.9. Finally, the neck
radius vs. elongation curve for both calculations is shown in figure IV .5.10).

IV.5.4. Plane strain tension test

Consider now the softening behavior of a tension strip in plane strain. The height /width
ratio of the strip is three(3). The material properties are K = 164.206, u = 80.1938 and
oo = 0.450 along with linear isotropic softening behavior. Forty-eight(48) proportional
load steps are performed. For the ALE calculation, the material remap ¥ is determined
using a Mooney-Rivlin energy function with ¢;/c; = 3. Smoothing is performed at every
time step.

The final deformed meshes for the pure Lagrangian and the ALE simulations are
shown in Figure IV.5.11. The final material remap x is shown in Figure IV.5.12. The
disctribution of the equivalent plastic strain is shown in Figure IV.5.13. Finally, the neck
load vs. displacement curve for both calculations is shown in figure IV.5.14. The softer
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FIGURE IV.5.9 Material Remap Necking Problem (1/4 domain)
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FIGURE IV.5.10 Necking problem. Neck Radius vs. Elongation
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response of the ALE solution is to be noted. We observe also the sharper localization of
the plastic strain in the ALE solution, as it can be observed in the deformed boundary of
the strip. :

IV.5.5. Indentation of an elastoplastic block

Consider now the softening behavior of a compressed region in plane strain. The
lenght/height ratio of the strip is two(2). The material properties are K = 164.206,
p = 80.1938 and op = 0.450 along with linear isotropic softening behavior. Twenty(20)
proportional load steps are performed. For the ALE calculation, the material remap ¥ is
determined using a Mooney-Rivlin energy function with c; /c; = 3. Smoothing is performed
at every time step.

The final deformed mesh for the pure Lagrangian calculation is shown in Figure
IV.5.15. The final deformed mesh for the ALE simulation is shown in Figure IV.5.16.
The final material remap X is shown in Figure IV.5.17. Figure IV.5.18 depicts the dis-
tribution of the equivalent plastic strain for both solutions. Finally, the neck load vs.
displacement curve for both calculations is shown in Figure IV.5.19. The softer response
of the ALE solution is to be noted again, improving on the resolution of the shear band.

IV.5.6. Impact of a circular bar

We consider in this section the dynamic impact of a circular bar on a rigid frictionless
wall. This is a commonly simulated test problem in the finite element literature and a
standard benchmark problem for transient dynamic computer codes. The problem was
originally studied both theoretically and experimentally by TAYLOR [1948], where a cor-
relation was obtained between the initial velocity of the bar and its final length. This
relationship depends critically upon the yield stress of the bar, leading to a useful method
to determine experimentally the yield limit of the material under high strain-rate condi-
tions. WILKINS & GUINAN [1973] extended this original work with further experlments
and numerical simulations. In particular, they developed the improved relation

pov? — log lo—h
20ug lgy—h’

(IV.5.3)

where vg is the initial velocity, lp is the initial length and ! 7 is the final length. The
parameter h is the mean position of the plastic front, which is assumed to be approximately
h = 0.12ly, independent of the material properties. Finally, Owg is the yield limit of the
material under high strain-rate conditions. This stress parameter is correlated to fit the
experimental and numerical work in WILKINS & GUINAN [1973].

Based on the experimental results reported in WILKINS & GUINAN [1973], we consider
a bar of length lp = 32.4 mm and a circular cross section of radius 7o = 3.2 mm. Two
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ALE Lagrangian

FIGURE IV.5.11 Plane strain tension test. Deformations for the
ALE and Lagrangian solutions.

FIGURE IV.5.12 Plane strain tension test. Material remap in the
ALE solution.
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ALE Lagrangian

EQUIV. PLASTIC STRAIN
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FIGURE IV.5.13 Plane strain tension test. Distribution of the equiv-
alent plastic strain for the Lagrangian and ALE solutions
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FIGURE 1IV.5.14 Plane strain tension test. Load-displacement
curve.
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FIGURE 1IV.5.15 Indentation of and elastoplastic block. Deformed
Lagrangian mesh compression localization problem

— T
FIGURE 1IV.5.16 Indentation of and elastoplastic block. Deformed
ALE mesh compression localization problem

l

FIGURE 1V.5.17 Indentation of and elastoplastic block. Material
remap compression localization problem
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FIGURE 1IV.5.18 Indentation of and elastoplastic block. Distribu-
tion of the equivalent plastic strain for the Lagrangian and ALE solu-

tions.
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FIGURE IV.5.19 Indentation of and elastoplastic block. Load-
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FIGURE 1IV.5.20 Impact of a circular bar. Reference mesh. Only
half of the specimen is discretized with 7 x 32 Q1/P0 mixed finite

elements, with axisymmetric conditions.

TABLE IV.5.4 Impact of a circular bar. Assumed material properties

for Copper OFHC.

Bulk Modulus K 130.000 GPa
Shear Modulus 7 43.333 GPa
Flow Stress Yo 0.12 GPa
Saturation Hardening yoo 0.62 GPa
Hardening Exponent  § 3.01

Density Po 8930. kg/m?

TABLE IV.5.5 Impact of a circular bar.

for Aluminum 6061-T6.

Assumed material properties

Bulk Modulus K
Shear Modulus - I
Flow Stress Yo

Saturation Hardening g
Hardening Exponent §
Density Po

58.33333
26.92308
0.30
0.42
28.60
2700.

GPa
GPa
GPa
GPa

kg/m3
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materials are considered: pure copper (Copper OFHC) and a structural aluminum alloy
(Aluminum 6061-T6). The assumed material parameters are summarized in Tables IV.5.4
and IV.5.5, respectively. The contact with the rigid wall is assumed frictionless and non-
sticky, that is, with the bar free to rebound from the wall. The reference mesh for all the
simulations is shown in Figure IV.5.20.

The time step used in the numerical calculations is At = 1.0 us. The Newmark
parameters are chosen as § = 0.5 and ¥ = 1.0. For the ALE calculation, the material
remap X is determined using a Mooney-Rivlin energy function with ¢; /c; = 3 and k = 0.
The determination of x is based only on Fp;. In other words, the smoother performs
calculations based on the assumption that F is of the form F := I + Fyses ® Eo. Other
components are not considered. This is the same methodology used for the necking problem
of the previous section.

The initial velocities considered in the numerical simulations are vy = 0.210 mm/pus
for the Copper OFHC, and vy = 0.373 mm/us for the Aluminum 6061-T6. The final
deformed meshes obtained in fully Lagrangian simulations are shown in Figure IV.5.21 for
both the Copper OFHC and Aluminum 6061-T6 specimens. Figure IV.5.22 depicts the
spatial meshes obtained in the ALE simulations. We note that these deformed meshes do
not reflect directly the deformation of the material. They correspond to the deformations
from the material mesh, which is depicted in Figure IV.5.23 for both cases. The distortion
of the mesh in the original Lagrangian simulation is avoided by rezoning the material
domain. The smaller distortion of the meshes in Figure IV.5.22 is to be noted when
compared with the Lagrangian solutions in Figure IV.5.21.

Figure IV.5.24 includes a picture of some of the deformed specimens reported by
WILKINS & GUINAN [1973], together with the solutions computed in this work depicting
the distribution of the equivalent plastic strain confirming the preceding observations. A
good agreement is observed on the final deformation of the specimens. It is interesting
to note the differences in the results between the aluminum and the copper. Note that
the contours of equivalent plastic strain for the copper bar are less concentrated in the
impact region than in the aluminum bar. The copper strain hardens much more than
the aluminum, and thus the deformation in the copper bar is less concentrated and more
diffuse. The characteristic bulging of the specimen is to be noted. The aluminum hardens
less and over a smaller range of strain than the copper. Under these impact conditions,
the aluminum behaves essentially as a elastic-perfectly plastic with no hardening at an
initial yield stress of 0. Upon impact, the aluminum hardens and reaches this limiting
value quickly. On the other hand, the copper does not reach the limiting value of oo, so
quickly, and thus assuming the copper to be elastic-perfectly plastic is not reasonable. The
value of 04,4 is chosen less than o, to account for the extensive ductility and wide range
of strain-hardening the copper undergoes.

Finally, Figure IV.5.25 depicts a plot of the scaling law, equation (IV.5.3), the com-
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Copper OFHC Aluminum 6061-T6
L. —— " """} . ]

FIGURE IV.5.21 Impact of a circular bar. Lagrangian solutions for
the Copper OFHC and Aluminum 6061-T6 bars.
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FIGURE 1IV.5.22 Impact of a circular bar. ALE solutions for the
Copper OFHC and Aluminum 6061-T6 bars. The spatial mesh is
shown.
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FIGURE 1IV.5.23 Impact of a circular bar. ALE solutions for the
Copper OFHC and Aluminum 6061-T6 bars. The material remap is
shown.
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Copper OFHC
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FIGURE IV.5.24 Impact of a circular bar. ALE numerical solutions
for the Copper OFHC and Aluminum 6061-T6 bars showing the equiva-
lent plastic strain, and the experimental results reported by WILKINS

& GUINAN [1973).
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FIGURE 1IV.5.25 Impact of a circular bar. Comparison between
computed results, experiments and scaling law.
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puted ALE solutions for the copper and the aluminum bars, and the reported experimental
results. A good correlation is found, validating the proposed ALE finite element methods.

IV.6. Concluding Remarks

We have presented an Arbitrary Lagrangian-Eulerian (ALE) formulation for solid
mechanics which may be used for the finite element simulation of elasticity and plasticity
problems. The proposed method involves a fully implicit formulation; with a staggered
treatment of the advection of the internal variables. In particular, the direct use and
interpolation of the material map x has been shown to lead to a simplified treatment
of the advection part, in contrast with existing procedures. Numerical simulations have
verified the validity of the approach. Current work includes the consideration of the fully
dynamic problem

Appendix IV.1. Constitutive Models

We summarize in this appendix the specific constitutive models used in the numerical
simulations presented in Section IV.5. For all the elasticity numerical simulations, we
consider the classical Mooney-Rivlin model for rubber elasticity, modified tolallow for non-
isochoric response. Given a deformation gradient F, define F := det(F) 3F. Let € :=
FTF. In the actual numerical implementations, we evaluate the constitutive response
using F defined in equation (IV.2.38). Then, the free energy function W is given by

W(F):=c [L(C)-3] +c: [I(C) - 3] + kU (J), (IV.1.1)

where I; and I, are the first and second invariants of a symmetric rank two tensor, respec-
tively, and J = det(F'). Also, U(-) is the volumetric response function and ¢; > 0, ¢ > 0
and & > 0 are fixed material parameters. We use U(J) := 1(J2 — 1) — log(J). This is a
convex function of the argument J.

For all the plasticity numerical simulations, we use a finite strain J, flow theory
designed to mimic the classical model of infinitesimal elasto-plasticity. It is the same
model as discussed in section 5 of SIMO [1992]. Define {€{, €5, €5} as the principal values
of %logbe. These are the principal logarithmic elastic stretches. Next, define

€& 5. (IV.1.2)

Let

a:=|K- ép K+ Zu K- 2;1 (IV.1.3)
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where K > 0 and p > 0 are two material constants. Let
B = ae’ (IV.1.4)

be the principal Kirchhoff stresses ( the principal values of T )
The model of plasticity is given by

1. Hyperelastic resonse defined by free energy function :

1
Wi(e) := -2-66 - ae’
2. von Mises yield criterion :

2
o7, q) = |devB] — \/;q <0

3. Saturation Isotropic Hardening :

4(§) := 000 + (00 — 0o )exp(—8€) + HE

where 09, 0, 6 and H are prescribed material parameters.

4. Associative Evolution Equations :

Lo =P = Gr— oy (F—l [@} F) GP

2 or or
. 2
]
with 8¢/01 = dev 8/||8]| in the principal directions.

The model is implemented numerically using an exponential return mapping approach.
The reader may consult CUITINO & ORTIZ [1992] and SIMO [1992] for more detailed
information.

Appendix IV.2. Numerical Implementation of Three Dimensional
Elasticity

The discussion in this section focuses on the finite element implementation of finite
strain elasticity within an ALE context. The discussion is very similar to that of YAMADA
& KIKUCHI [1993]. In this paper, the authors discuss the equations within a two field
variational context. Here, we shall discuss a three field approach to the problem. The
discussion here assumes a fully coupled solution strategy to the elasticity problem.
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IV.2.1. Preliminaries

Assume there exists a fixed Cartesian coordinate system for our problem which all
three domains ( reference, material, spatial ) share. In such a case, introduce displacement
fields uy and U such that

X =m+uy (Iv.2.1)

and
X=m-+ U¢ (IV.2.2)

where m is the reference coordinate, X is the material coordinate and x is the spatial
coordinate. This then gives

Fy = GRADm[X] = 1+ GRADy[uy] (1IV.2.3)

and

The fields uy and Uy shalll be discretized using standard finite element interpolations.
Let Auy be an arbitrary increment to uy and let Au¢ be an arbitrary increment to
Ugy- For future use, define

d
AF := %-F(u,‘[, + aAu¢, uy + aAux)] (Iv.2.5)

a=0

and

lay = (AF) F~1. (IV.2.6)

After some manipulations, one may produce the result
lay = gradx[Auw] — Fgrad, [Auy] (Iv.2.7)

Assume there exists an isothermal free energy function W (F') describing the consti-
tutive response of the elastic material. Defining 7 as the Kirchhoff stress tensor, one has
the well known result

T = —ﬁFT (IV.2.8)

This constitutive response will produce, upon time differentiation, a rank four tensor D(F)
such that + = DI where 1:= FF~? is the spatial velocity gradient.

IV.2.2. Linearizations

In this section we give the consistent linearizations of the three weak equations
(IV.2.35) - (IV.2.37). We have previously defined Au¢ and Auy. Let A9 and Ap be
arbitrary increments to 6 and p, respectively. Note that the volume element df2, is not
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constant in this case, but can be related to the constant reference volume element by

IV.2.2.1. Linear Momentum
The linearization of the linear momentum equation yields the terms

TANGENT = — / grad, [n] gradx[Au¢] : [lgeuT + pJ 1] d2
20
+ / grad,[n] : [Hdev]ﬁ)ﬂdev +pJ1®1]1a, dS2
20
+ / grad,[n] : (—1—]Idev]f)>1) Afdf2y
2 30

+/ grad,[n] : J1Apdy
29

+ / grad, [n] : [(IgeoT + pJ 1) ® FT] grad, [Auy] di2p.
2

IV.2.2.2. Constitutive Equation for Pressure
The linearization of the constitutive equation for p yields the terms

1. 1 -
TANGENT:/ 56 [—3—0—2(7.1)+§0—2—(D1.1)} A8,

2

n / 50 [indev®T1J : 1ay d2
0, |36

+ /Q 0 [1%1— ]FT : grad, [Auy] df2

2

IV.2.2.3. Compatibility Equation for Theta
The linearization of the compatibility equation for § generates the terms

TANGENT = / 5pJ1 : grad,[Aug)dfd
o

— | O0pOFT : grad,[Auy]df
2

- dp AGdS.
2

(IV.2.9)

(IV.2.10)

(IV.2.11)
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Remarks IV.2.1.

1. In general, the system tangent matrix is unsymmetric.

2. The pure Lagrangian formulation is easily recovered by setting uy := 0, so that x :=
td. In this case, F = F,(p. Additionally, all terms involving grad, [Auy] in the tangent
terms are to be neglected. In particular, we get the simplification 1p, = grad, [Auw].
O

IV.2.3. Augmented Lagrangian modifications

The augmented Lagrangian technique to be presented here is reviewed within the
purely Lagrangian finite element setting in SIMO & TAYLOR [1991]. We wish to enforce
the constraint of incompressibility upon this formulation of finite strain elasticity. To that
end, assume that the free energy function may be additively decomposed such that

W(F)=W (det[F]‘%F) + kU (det[F)) (IV.2.12)

where k£ > 0 is a penalty parameter, W is a free energy function based on the isochoric
component of F and U is a scalar convex function of the determinant of F. If W(F) is
evaluated, the result is

W(F) = W ( ~%F) +xU(8). (IV.2.13)

The constraint chosen is h(f) := 6 — 1 = 0. Other equivalent forms for the function h may
be chosen. For example, h(6) = log(f) is also a suitable choice. The requirements for h
are simply that A(1) = 0 and that h’(1) # 0. '

Towards enforcement of said constraint, add the following term to the potential energy
expression IT :

/ Aah(6) df2o, (IV.2.14)
2

where A4 is the augmented Lagrangian parameter. Thus, the constitutive equation for
pressure becomes

T:1

/ 56 [f— —p+ /\Ah’(e)] 2 =0 (IV.2.15)
2 30
This produces two extra tangent terms, which are
TANGENT = | §0MaFT : grad,[Auy]df,

2
+ 80 h" (6) A8 ds2,. (Iv.2.16)

20

The actual implementation of the augmented Lagrangian technique involves a nested
iteration process. First, for a given time step, an initial value of A 4 is chosen. One usually
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chooses the converged value from the previous global time step. Next, the above equations
are solved with this fixed value of A4. After convergence is achieved, the parameter is
updated using the equation

At = 2, D 4 o p(®) (Iv.2.17)

where the equations have been solved at augmented Lagrangian iteration (¢) and the
analysis is to advance to iteration (i + 1). This process continues until the constraint is
satisfied to some chosen numerical tolerance. The convergence rate towards the constraint
is expected to be linear. Then, we may advance to the next global time step.
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